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The corrected rotational diffusion coefficient for a rod in the free
molecular regime is given in this work and a simplified derivation
using the differential drag forces for a rotating rod in the free
molecular regime is presented to explain the difference between
our result and the one from Kim’s approach. Finally, we compare
the rotational diffusion coefficient between a rod and an ellipsoid
with the same aspect ratio and the same volume.

1. INTRODUCTION
Rotational diffusion coefficient, which is related to rotational

mobility, is the characteristic value of the Brownian rotation of
a particle. This quantity is important in studies of the align-
ment of nonspherical particles in an electric field (Li 2012; Li
et al. 2012, 2013a,b). The theory for rotational Brownian dif-
fusion coefficient of dilute suspensions of axially symmetric
particles in the continuum regime has been studied by a num-
ber of researchers (Brenner 1974; Brenner and Condiff 1974;
Ortega and de la Torre 2003). In the free molecular regime,
Halbritter (1974) calculated the rotational torque for a general
convex-shaped particle and obtained an explicit torque expres-
sion for an ellipsoid (Halbritter 1974; Williams and Loyalka
1991). Eisner and Gallily (1981) calculated the rotational diffu-
sion coefficient of nonspherical aerosol particles and obtained
an explicit rotational diffusion coefficient expression for a rod.
However, Eisner and Gallily (1981) did not express the moment
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of specular reflection correctly. In Equation (3.6) of Eisner and
Gallily (1981), the velocities should be relative to the parti-
cle surface, i.e., (v1, v1

′), instead of to the observer, (v2, v2
′)).

The corrected rotational diffusion coefficient for a rod in the
free molecular regime, using a common definition of rod aspect
ratio β = Lr/dr, is

Dr,f = kBTKn

πμL3
r

[(
1
6 + 1

8β3

) + f
(

π−2
48 + 1

8β
+ 1

8β2 + π−4
8

1
8β3

)] ,

[1]

where kB is the Boltzmann constant, T is the absolute temper-
ature, the Knudsen number Kn = 2λ/dr, λ is the mean free
path of gas, dr is the rod diameter, Lr is the rod length, μ is
the gas viscosity, and f is the momentum accommodation. To
compare with our result, we give Eisner and Gallily’s uncor-
rected equation (Eisner and Gallily 1981):

Dr,f = kBTKn

πμL3
r

[(
1
4 + 1

4β
+ 1

4β2 + 1
8β3

)
+ f

(
π−6
48 − 1

8β
− 1

8β2 + π−4
8

1
8β3

)] .

[2]

The difference between the two expressions is 5–10% for
a momentum accommodation, f , of 0.9 and rod aspect ratio β

greater than 2.

2. DERIVATIONS AND DISCUSSIONS
The corrected rotational diffusion coefficient for a rod in the

free molecular regime, i.e., Equation (1), can be obtained by
repeating the derivation procedures in Eisner and Gallily (1981)
but using the correct velocity relationship for specular reflection
as mentioned earlier. In this work, we show another derivation
for Equation (1) using the differential drag forces for a rotating
rod in the free molecular regime and explain the difference
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FIG. 1. A rotational rod (with angular velocity ω
−→
i ) in a coordinate system

(�i, �j, �k).

between our result and the one from Kim’s approach (Kim et al.
2007).

Halbritter (1974) calculated the differential drag forces for a
general convex particle with an angular velocity ω in the free
molecular regime (Halbritter 1974, Equation 8). We apply the
general equation to calculate the differential drag forces for a
rotational rod with an angular velocity ω (Figure 1). Assum-
ing that the rod (with length Lr and diameter dr = 2ρ) rotates
along the �i axis, for a small patch on the curved portion of the
cylindrical surface with coordinates (ρcosφ, ρsinφ, z), the dif-
ferential forces along the �j axis, dFj

c, and along the �k axis, dFk
c,

are

dFc
j = μ

λ
ωz

[(
2 − 4 − π

4
f

)
sin2 φ + 1

2
f cos2 φ

]
dSc, [3]

dFc
k = − μ

2λ
f ωρ sin φdSc, [4]

where dSc = ρdφdz and the integration range −Lr

2 ≤ z ≤ Lr

2 ,
0 ≤ φ ≤ 2π .

For a small patch on the flat-end surface with coordinates
(ρ ′cosφ, ρ ′sinφ, Lr/2), the differential forces along the�j axis,
dFj

e, and along the �k axis, dFk
e, are

dFe
j = μ

2λ
f ω

Lr

2
dSe, [5]

dFe
k = −

(
2 − 4 − π

4
f

)
μ

λ
ωρ ′ sin φdSe, [6]

where dSe = ρ ′dφdρ ′ and the integration range 0 ≤ ρ ′ ≤ ρ,

0 ≤ φ < 2π.

Then, the total torque, M, along the �i axis can be obtained
by considering the contribution from forces along �j axis and �k
axis for the curved cylindrical surface (1st integral) and the two

flat-end surfaces (2nd integral) as

M =
∫ (−zdFc

j + ρ sin φdFc
k

) + 2
∫ (

−L

2
dFe

j + ρ ′ sin φdFe
k

)

=πμL3
r

[(
1

6
+ 1

8β3

)
+ f

(
π − 2

48
+ 1

8β
+ 1

8β2

+ π − 4

8

1

8β3

)]
drω

2λ
. [7]

Then, the rotational mobility is Bω = ω/M , and the ro-
tational diffusion coefficient is Dr,f = kBT Bω, which gives
Equation (1).

The differential forces parallel to the velocity direction, i.e.,
dFj

c in Equation (3) and dFj
e in Equation (5), are identical to

the differential forces in Equation (21) of Dahneke (1973) on
substituting drifting velocity Vd = −ωz and Vd = −ωLr/2, re-
spectively. However, the differential forces perpendicular to the
velocity direction for a rotational movement (dFk

c in Equation
(4) and dFk

e in Equation (6), respectively) are different from the
forces for a constant translational movement which are zero as
given by Dahneke (1973).

2.1. Comparing our Result in Equation (1)
with Kim’s Approach

In the free molecular regime, Kim et al. (2007) used a much
simpler but approximate method to obtain the rotational dif-
fusion coefficient of a rod by applying the drag forces from
Dahneke (1973). Since Dahneke’s drag force expressions were
presented for a rod with a constant translational movement
as we discussed earlier, Kim’s approach calculated the torque
from the forces parallel to the velocity direction, but did not
consider the torque from the forces perpendicular to the veloc-
ity direction. Even though the sum of the forces perpendicular
to the velocity direction is zero, the sum of the torque from those
forces is not zero. However, if the rod diameter is much smaller
than the length, i.e., for 1/β small, the torque from the forces
perpendicular to the velocity direction can be neglected, which
makes Kim’s approach a good approximation for a slender rod.
After correcting the missing factor of “2” (Kim et al. considered
the rotational resistance of only half of the rod), and considering
the effect of the two ends of the rod using Kim’s approach, we
obtain

Dr,f = kBT Kn

πμL3
r

[
1
6 + f

(
π−2
48 + 1

8β

)] . [8]

To order 1/β, Equations (8) and (1) are identical.

2.2. Comparing the Rotational Diffusion Coefficient
Between a Rod in Equation (1) and an Ellipsoid

We make use of the explicit expression for the torque of
an ellipsoid (Equation 13 of Halbritter, 1974) to compute its
rotational diffusion coefficient, and compare it with Equation
(1). The ratio between the rotational diffusion coefficient of an
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FIG. 2. Rotational diffusion coefficient ratio between an ellipsoid and a rod
with the same volume and the same aspect ratio for a rod diameter dr = 15 nm.

ellipsoid and a rod with the same volume and the same aspect
ratio is plotted in Figure 2 assuming a rod diameter dr = 15 nm
and a momentum accommodation f = 0.9. The difference in the
rotational diffusion coefficients for a rod and an ellipsoid with
the same aspect ratio and same volume is less than 2.2% for
aspect ratios larger than 20.

3. CONCLUSIONS
The corrected rotational diffusion coefficient for a rod in the

free molecular regime is given in this work and a simplified
derivation using the differential drag forces for a rotating rod in
the free molecular regime is presented to explain the difference

between our result and the one from Kim’s approach (Kim et al.
2007). Finally, we compare the rotational diffusion coefficient
between a rod and an ellipsoid with the same aspect ratio and
the same volume.
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