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Understanding the mobility of nonspherical particles in the free molecular regime
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An approach to obtain the mobility of nonspherical particles is proposed by averaging the drag force
orientationally, and two other widely used approaches in the literature, the averaged-collision-integral and
averaged-drift-velocity methods, are summarized and extended. The concept of orientationally averaged collision
integrals based on Chapman-Enskog theory for small gas-phase ions is re-examined for macromolecular ions
whose surface cannot be treated as specular, but with inelastic interactions. A well accepted collision model
considering inelastic collisions is Epstein’s theory, which has been extended to include long-range potential
forces by Li and Wang [Phys. Rev. E 68, 061206 (2003)] for spherical particles. This work extends Li and
Wang’s spherical particle theory to convex nonspherical particles considering long-range potential, and simplifies
this collision integral to a product of the averaged projection area and an enhancement factor for short-range
interactions (hard collisions), which is independent of convex particle shape and is identical to the value for a
sphere that people are using. We also show that the averaged projection area of a convex particle in free molecular
regime for hard collisions is equal to its mobility diameter. The second approach is the averaged-drift-velocity
approach using the friction coefficient in a tensor form, which is often employed in aerosol science. We extend
this approach in our previous work for axisymmetric particles to develop an expression for the mobility of
nonspherical particles in a general form. Furthermore, it is pointed out that this approach is only valid when the
particle Brownian rotation is slow compared with the particle translational relaxation time. If the particle Brownian
rotation is fast, usually so in the case of very small ions and particles, we propose an “averaged-drag-force”
approach. The three approaches are then compared for a randomly oriented rod and the protein GroEL. We show
that for a cylinder rod in the free molecular regime at random orientation, the averaged-drag-force approach
is identical to the averaged-collision-integral approach for short-range interactions (hard collisions). We then
summarize the relationship between collision-integral based approach and tensor based approaches. For readers
only interested in implementation of the theory, we provide useful expressions in Tables I and II.
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I. INTRODUCTION

Mobility as an important particle transport property is
critical to the measurement of the dynamics of gas-phase ions
and nanoparticles in fluids, and of interest to a wide range
of research including the structure study of atomic clusters,
macromolecules [1–4], and in aerosol science [5–8]. The
relationships between mobility and diameter of a specular
spherical ion in a gas and a spherical particle in a gas are
well established and governed by Chapman-Enskog theory
[8] (Ferziger and Kaper, 1972, Sec. 7.3) [9] and the Stokes-
Cunningham formula [8,10], respectively. However, most ions
and particles are nonspherical and the relationship between
geometric shape and mobility is much more complicated.

Mason and McDaniel [11] extended the Chapman-Enskog
theory for the mobility of a nonspherical small ion by calcu-
lating its orientationally averaged collision integral. This has
been widely applied to structure determination of molecular
clusters [12] and macromolecules, including proteins and
their complexes [4,13] using ion mobility spectrometry (IMS)
combined with mass spectrometry (MS). There are two basic
approaches to determine the orientationally averaged collision
integral: projected area (PA) [1] and exact hard-spheres
scattering (EHSS) [2]. The structure of a molecular cluster
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or a macromolecule can then be determined by comparing
the measured mobility, with the calculated mobility based
on either of the two collision integrals for an assumed
molecular structure. However, when an ion becomes large, and
approaches the size of an aerosol particle (a few nanometers
[7]), the surface of the particle relative to very small gas
molecules cannot be treated as a simple specular surface,
but rather a surface with inelastic interactions (or energy
interconversion between the kinetic energy of a gas molecule
and the internal energy of the target particle) [14,15], thus the
above relationships between mobility and the two collision
integrals used for small ions need to be reexamined. The
PA projected area method has been extended to a projected
superposition approximation (PSA) method to account for
a shape factor and to adjust the atom size as a function of
temperature [16,17]. However, the PSA method is still an
elastic model, and the shape factor using this PSA method
only considers the roughness of the particle surface. For a
spherical particle in the free molecular regime, Epstein [14]
proposed an accommodation factor f to incorporate inelastic
collisions (or diffuse reflections) for spheres with short-range
interactions (hard collisions), resulting in an enhancement
factor ξ = 1 + πf /8 compared with the drag force for
small molecules with fully specular reflections from Chapman-
Enskog theory. Tammet [15] suggested this enhancement
factor is 1.32 for macroscopic spherical particles, and Hogan
and de la Mora [18] used a value 1.36 based on spherical
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symmetry. In the literature, this enhancement factor derived
from spheres has been widely applied to nonspheres without
rigorous consideration [16,19].

Recently, Larriba and Hogan developed a calculational
approach to consider diffusion scattering for collision integral
calculations [20,21]. In this work, we propose a simpler
expression for the orientationally averaged collision integral
for nonspherical particles based on extending the approach
of Li and Wang [8] used for spherical particles. For short-
range interactions (hard collisions) we show that the collision
integral for a convex particle simplifies to the product of the
averaged projection area multiplied by the 1 + πf /8 factor.
Furthermore, by connecting the extended Epstein expression
to the Stokes-Cunningham expression for a nonspherical
convex particle for short-range interactions (hard collisions),
the averaged projection area diameter for a convex particle
in the free molecular regime is shown equal to the mobility
diameter.

Another approach to obtain the mobility of nonspherical
particles is the averaged-drift-velocity approach proposed by
Happel and Brenner [22] for particles in low Reynolds number
flows. Beginning with the friction coefficient expressed in a
tensor form, the averaged mobility or averaged drag force
of a randomly oriented particle is obtained by averaging
the drift velocity of the particle by equating the drag force
to the external force for each particle orientation. This
quasiequilibrium approach has been widely used in the study
of aerosol particles in all three regimes: free molecular,
transition, and continuum regimes [23–27]. Dahneke [24]
employed this approach to obtain the randomly oriented
resistance coefficient of straight-chain aggregates of uniform
spheres in all three regimes. Mackowski [27] employed this
approach for simulating the averaged drag force acting on a
randomly oriented cluster in the free molecular regime. We (Li
et al.) [28] extended this approach for axisymmetric particles
allowing for a Boltzmann orientation distribution arising from
the competition between Brownian motion and the alignment
of nonspherical particles in an electric field, which has been
experimentally verified using a monodisperse gold nanorod
[5,29].

In this work, we extend this approach (averaged-drift-
velocity) further to a convex particle with any shape. However,
this approach (averaged-drift-velocity) implicitly assumes that
the particle Brownian rotation is slow compared with the
particle translational relaxation time [30], so that at each
orientation the drag force is immediately balanced by the
external force. On the other hand if particle Brownian rotation
is fast compared with the particle translational relaxation
time, i.e., typically for small ions and for particles in the
free molecular regime, we develop an averaged-drag-force
approach using the friction coefficient in tensor form. The
mobility diameters from the averaged-drift-velocity approach
and from the averaged-drag-force approach can be treated as
two theoretical limit diameters.

The mobility diameters for the same particle computed by
the three approaches (averaged-collision integral, averaged-
drift velocity, and averaged-drag force) are then compared with
each other for randomly oriented rods. For a cylinder rod in
the free molecular regime at random orientation, the averaged-
drag-force approach is shown to be identical to the averaged-
collision-integral approach for a short-range interaction (hard
collision). We also compare the calculation results of the
three approaches to experimental values of gold nanorods,
which is a rigid rod with dimensions (from TEM) 17 nm ×
270 nm, and show that the experimental mobility diameter
falls between the two limit diameters from the averaged-drift-
velocity and from the averaged-drag-force approach. Finally,
the calculation results of the three approaches are compared
with the calculation results for the protein GroEL.

For readers only interested in implementation of the theory,
we provide the working formulas in Table I and II.

II. THEORY

We begin with a summary of the relevant expressions that
result from the three approaches to be developed and discussed
in this paper. Some readers may wish to skip some of the
detailed derivations and proceed directly to Sec. III. The three
approaches in this section for the expressions of drag force and
electric mobility are presented in Table I.

TABLE I. Summary of resulting working expressions from the three approaches (in Sec. II) for the drag force and electric mobility of
nonspherical particles.a The criterion for a rod was described in Li (2012, pp. 165–169) [30] to assess if Brownian motion of a cylindrical
particle is slow or fast by scaling to the particle translational relaxation time to determine which approach applies. In Li (2012, pp. 165–169)
[30], a characteristic time τ 0 was defined for Brownian rotation, and compared with the translational relaxation time τ t,rod = m/Krandom, where
m is the mass of the rod, 1/Krandom = 2/K1 + 1/K3, and K1, K3 were given in Sec. IVA for a rod in the free molecular regime. If τ 0/τ t,rod <

1, then Brownian rotation is considered fast, and the averaged-drag-force approach applies; if τ 0/τ t,rod > 482, Brownian rotation is considered
slow, and the averaged-drift-velocity approach applies; and if τ 0/τ t,rod falls in between, it is a mixed picture.

Approach Criterion for a rod Drag force and mobility Eq.

Approach I: Avg 〈�〉 τ 0/τ t,rod < 1 �Fdrag = − 8
3

√
2mrkBT

π
N〈�〉 �Vd, (1)

Zp = 3q

16N

√
2π

mr kBT

1
〈�〉 , (3)

where 〈�〉 is given by Eq. (5)
Approach II: Avg〈 �Vd〉 τ 0/τ t,rod > 482 �Fdrag = −K̂ · �Vd, (19)

〈Zp〉⇀
k

= q(K−1
1 〈sin2 θ sin2 ψ〉 + K−1

2 〈sin2 θ cos2 ψ〉 + K−1
3 〈cos2 θ〉), (22)

Approach III: Avg〈 �Fdrag〉 τ 0/τ t,rod < 1 �Fdrag = −K̂ · �Vd, (19)
Zp = q/(K1〈sin2 θ sin2 ψ〉 + K2〈sin2 θ cos2 ψ〉 + K3〈cos2 θ〉) (27)

aThe definitions of the symbols in this table refer to Eqs. (1), (3), (5), (19), (22), and (27).
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TABLE II. Summary of the working expressions for mobility diameter of nonspherical particles with convex shape undergoing hard
collisions (with fully random orientation) using the three approaches (Sec. IV).a The criterion for a rod is explained in the caption of Table I.

Approach Criterion for a rod Mobility diameter Eq.

Approach I: Avg 〈�〉 τ 0/τ t,rod < 1 dm = dpa (18)
for hard collisions

Approach II: Avg〈 �Vd〉 τ 0/τ t,rod > 482 2λ(A1+A2)q
3πηd2

m
= 1

3 q( 1
K1

+ 1
K2

+ 1
K3

) (23), (30)

Approach III: Avg〈 �Fdrag〉 τ 0/τ t,rod < 1 2λ(A1+A2)q
3πηd2

m
= 3q

K1+K2+K3
(28), (30)

aThe definitions of the symbols in this table refer to Eqs. (18), (23), (28), and (30).

A. Approach I: Mobility of a nonspherical particle
from the averaged-collision-integral

The momentum transfer (or drag force) between a small
spherical ion and gas molecules is determined by the collision
integral �(1,1) (or simply �) and governed by the Chapman-
Enskog relationship [8,9]. Mason and McDaniel [11] extended
it to a nonspherical small ion by replacing � with an
orientationally averaged collision integral 〈�〉,

�Fdrag = −8

3

√
2mrkBT

π
N〈�〉 �Vd, (1)

〈�〉 = 1

8π2

∫ 2π

0
dϕ

∫ π

0
dθ sin θ

∫ 2π

0
dψ�(ϕ,ψ,θ ), (2)

where N is the gas number density, mr is the reduced mass,
kB is the Boltzmann constant, T is the gas temperature, Vd

is the ion drift velocity, and ϕ, ψ , θ , are the Euler angles to
determine orientations of ions (see Appendix A, Fig. 1). By
equating the averaged drag force 〈Fdrag〉 to the external force
Fext = qE in an electric field E, where q is the free charge on
the small ion, the electric mobility of small nonspherical ion
(or particle) is obtained:

Zp = Vd

E
= 3q

16N

√
2π

mrkBT

1

〈�〉 . (3)

There are three implicit assumptions in the derivations
above. First, the collision between an ion and gas molecules are
elastic. Second, the drift velocity is assumed independent of
ion orientation, which is valid for small ions and for small
particles undergoing rapid rotation, and will be discussed
in Sec. IV. The third assumption is that the expression of
the collision integral of a nonspherical ion or particle at a
given orientation, that is, with fixed (ϕ, ψ , θ ,), has similar
form as for a sphere with the corresponding scattering angle.
Thus the use of Eq. (3) for nonspheres is reasonable by
averaging the scattering-collision integral over all orientations.
This method has been heavily employed in the study of
macromolecular ions such as proteins and other biological
particles. Typically, the expressions of collision integral �

(projection, trajectory, and projected superposition) are only
based on elastic collisions [2,3,16,31]. However, when an ion
becomes large and approaches the size of an aerosol particle,
the surface of the particle relative to small gas molecules
cannot be treated as a simple elastic surface. Rather one should
consider a surface with inelastic interactions between a gas
molecule and the internal energy of the relatively large particle
[14,15].

For a spherical particle with hard collisions, Epstein [14]
incorporated inelastic collisions by using an accommodation
factor, which was extended by Li and Wang [8] to include
long-range potential forces for a spherical particle,

� = �Epstein = f �d + (1 − f )�s, (4)

where �S is the specular-scattering collision integral, �d is the
diffuse-scattering collision integral [8], and f is a switching
function (or momentum accommodation factor). Epstein’s
approach assumes that a fraction of gas molecules, f, that
collides with the particle surface are instantaneously absorbed
on the surface and then re-emitted with a Maxwell velocity
distribution corresponding to the temperature of the surface.
Thus, f represents the fraction of diffuse reflections. Ku and
de la Mora reported f � 0.9 for larger than 1.3 nm nanodrops
[7]. In both scattering situations, the particle surface is treated
as a smooth surface.

For nonspheres we propose an orientationally averaged
collision integral approach to obtain the drag force and
mobility of a convex nonspherical particle in the free molecular
regime by extending Li and Wang’s theory [8] to obtain

〈�〉 = 〈�Epstein〉 = f 〈�d〉 + (1 − f )〈�s〉, (5)

where �S and �d are derived in Appendix C, Eqs. (C2) and
(C3); for the case of short-range interactions (hard collisions),
�S and �d are equivalent to cross sections Qs and Qd , where
Qs is given by [8,32]

�S = Qs = 2π

∫ bmax

0
b[1 − cos χ ]db (6)

and Qd is derived in the Appendix C as

�d = Qd = 2π

∫ bmax

0
b

[
1 + 3π

16
sin

χ

2

]
db, (7)

where b is the impact parameter, andχ is the scattering angle.
With the orientationally averaged collision integral 〈�〉 for a
nonspherical convex particle in Eq. (5), the drag force and the
mobility are given by Eqs. (1) and (3) respectively.

The orientationally averaging defined in Eq. (2) is assuming
random orientations. To consider orientations following a
distribution probability function f (ϕ, ψ , θ ), the averaged
collision integral could be defined as

〈�〉 =
∫ 2π

0
dϕ

∫ π

0
dθ sin θ

∫ 2π

0
dψf (ϕ,ψ,θ )�(ϕ,ψ,θ ), (8)

where ∫ 2π

0
dϕ

∫ π

0
dθ sin θ

∫ 2π

0
dψf (ϕ,ψ,θ ) = 1. (9)
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The orientational probability function f(ϕ, ψ , θ ) due to
Brownian rotation is discussed in Appendix B.

We note here that in the extended Epstein’s approach, that is,
Eq. (5), both 〈�s〉 and 〈�d〉 should be calculated assuming the
particle surface is smooth. For spheres (radius R) undergoing
hard collisions, the integrals in Eqs. (6) and (7) can be evaluated
analytically with the result �s = πR2 and �d = (1+π/8)πR2.
Shvartsburg and Jarrold [2] showed that for nonspherical par-
ticles with convex shape undergoing hard specular collisions
the total averaged cross integral is the sum of the averaged
cross integrals of infinitesimally small surfaces. Extending
this result, we show in Appendix C that the averaged collision
integral 〈�〉 in Eq. (5) for nonspherical particles with convex
shape undergoing hard collisions (including both specular and
diffusion collisions) can be simplified to the averaged projected
area multiplied by a factor

〈�〉 =
(

1 + πf

8

)
〈Qpa〉 = ξ 〈Qpa〉, (10)

where

ξ = 1 + πf

8
(11)

is “the enhancement factor” used in literature. 〈Qpa〉 is the
averaged projection area over all orientations of particle
(or ion) [averaging refers to Eq. (2)], and Qpa(ϕ,ψ,θ ) =∫ +∞
−∞

∫ +∞
−∞ M(ϕ,ψ,θ,x,y)dxdy is the projected area (or shade

area) at a particular orientation (ϕ, ψ , θ ,) (Appendix A, Fig. 1)
in a Cartesian coordinates inside a rectangle with sides along
the x and y axes, and M is unity when a hard collision occurs
and zero otherwise [1,3]. The averaged projection area of
particles with any shape can be calculated using the open
source software program MOBCAL [2,4].

It is noteworthy that the orientationally averaged collision
integral for a convex nonspherical particle calculated in Eq. (5)
is simplified to the averaged projection area with a factor
for hard collisions, which is independent of the shape of a
convex particle and is identical to the value for a sphere
in the literature. For a small specular convex ion with hard
collisions, the averaged collision integral 〈�〉 is equal to the
averaged projection area 〈Qpa〉, while for a convex particle
including diffuse collisions, there is an enhanced factor 1 +
πf /8. Tammet [15] assigns the enhancement factor a value
of 1.32 for macroscopic spherical particles, and Hogan et al.
[18,19] used 1.36 for small and large protein particles, both
based on Epstein’s spherical theory. In this work above, we
derived the same expression for a convex nonspherical ion or
particle, and showed it as the ratio between the true collision
integral and the projected area for hard collisions. For a small
specular ion, this factor, 1 + πf /8, is unity with f � 0 based
on Chapman-Enskog theory [8] (Ferziger and Kaper, 1972,
Sec. 7.3) [9], while for a relatively big ion or particle (Ku and
de la Mora reported f � 0.9 for larger than 1.3-nm nanodrops
[7]), this enhanced factor is greater than 1. We note that this
expression of enhanced factor in Eqs. (10) and (11) is only
valid for short-range interactions (hard collisions). For the
general expressions for averaged collision integral 〈�〉 and for
the enhanced factor which is defined as the ratio between 〈�〉
and 〈Qpa〉, one should use Eq. (5) and the collision integrals,

〈Qs〉 and 〈Qd〉, derived based on Li and Wang [8] given in
Appendix C, Eqs. (C2) and (C3).

For short-range interactions, combining Eqs. (1) and (10),
we obtain the drag for a convex hard-body particle,

�Fdrag = −8

3
ξ

√
2mrkBT

π
N〈Qpa〉 �Vd. (12)

Or, the mobility is

Zp = 1

ξ

3q

16N

√
2π

mrkBT

1

〈Qpa〉 . (13)

If we define an averaged projection area diameter as
dpa = √

4〈Qpa〉/π , then Eq. (12) becomes

�Fdrag = − 2
3ξ

√
2πmrkBT Nd2

pa
�Vd (14)

which is similar to Epstein’s equation for a spherical particle
except the diameter of a sphere is replaced by the averaged
projection area diameter of a nonspherical convex particle.

Connecting Epstein to Stokes-Cunningham for a non-
spherical convex particle for short-range interactions (hard
collisions). If we consider the expression of coefficient of
viscosity in Allen and Raabe (1982) [33],

η = φ(Nmr )

(
8kBT

πmr

)1/2

λ, (15)

where ϕ is a constant value, and assume the accommodation
factor f for a nonsphere has the same relationship with
Cunningham parameters as for a sphere in free molecular
regime as in Allen and Raabe [33,34],

f = 1

π

(
36φ

A1 + A2
− 8

)
, (16)

then Eq. (14) becomes

Fdrag = − 3πηd2
paVd

2λ(A1 + A2)
, (17)

where A1 = 1.165 and A2 = 0.483 for solid particles with
averaged free path λ = 67.3 nm for ambient air at sea
level and 23 °C given by Kim et al. [35], which gives
f = 0.868 and the enhanced factor ξ = 1 + πf /8 = 1.34.
Equation (17) is similar to the Stokes-Cunningham formula
for a sphere particle in the free molecular regime except
that the diameter of a sphere is replaced by an averaged
projection area diameter for a nonspherical convex particle.
Since Eq. (17) is exactly the definition of mobility diameter
for a nonspherical particle dm in the free molecular regime,
Fdrag = −3πηd2

mVd/2λ(A1 + A2), it results in

dm = dpa, (18)

that is, the mobility diameter is equal to the averaged projection
area diameter for a convex particle for short-range interactions
(hard collisions), which is a bridge between the projection
calculated diameter and the experimental measured mobility
diameter for short-range potentials. We note here that this
diameter of a nonspherical particle is averaged over all
directions in three dimensions, not just in two dimensions
or along three orthogonal directions as is assumed in some
examples in the literature [36].
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B. Approach II: Mobility of a nonspherical particle
from averaged-drift velocity

The averaged–drift-velocity approach is well accepted for
nonspherical particles at low Reynolds number [22]. The
reader should keep in mind that this approach is only valid
for particles whose Brownian rotation is slow compared to the
translational relaxation time [30].

Employing the friction coefficient K̂ in tensor form, the
drag force is expressed as [22,28]

�Fdrag = −K̂ · �Vd, (19)

where
⇀

V d is the drift velocity of the particle. The explicit
expressions of the three principle components (K1,K2,K3) of
the friction coefficient tensor for hard-body rods and prolate
spheroids were provided in Li et al. [28]. A general expression
of the friction coefficient tensor K̂of a convex hard-body
particle in the free molecular regime was proposed by de la
Mora based on Garcia-Ybarra and Rosner’s approach [37,38].

Assuming that at each orientation of the particle the drag
force is balanced by the electric force, we obtain

K̂ · �Vd = q �E, (20)

and

�Vd = qK̂−1 · �E. (21)

The orientation averaged velocity 〈 �Vd〉 can be expressed
in terms of the Euler angles ϕ, ψ , θ , which relate the body
fixed coordinate system (�i ′, �j ′,�k′) to the space fixed coordi-
nates (�i, �j,�k) (Appendix A), and the orientational probability

function f (ϕ, ψ , θ ).
⇀

k is defined as the external force
direction, here the electric force. The orientational probability
function f (ϕ, ψ , θ ) due to Brownian rotation is discussed in
Appendix B.

In general, the drift velocity
⇀

V d of a nonspherical particle
in Eq. (21) is orientation dependent, and the orientation
averaged velocity 〈 �Vd〉 may have components other than in

the
⇀

kdirection (external force direction). In such a situation,
we can consider the component of the average velocity along
the external force direction to define its mobility as

〈Zp〉⇀
k

= 〈Vd,z〉/E = q
(
K−1

1 〈sin2 θ sin2 ψ〉
+K−1

2 〈sin2 θ cos2 ψ〉 + K−1
3 〈cos2 θ〉). (22)

All the averaging above in Eq. (22) is defined in the
form of Eq. (8). The derivation of Eq. (22) is shown in
Appendix A1.

In some specific situations, the averaged drift velocity 〈 �Vd〉
only has one component which is along the external force

direction (
⇀

kdirection), that is 〈 �Vd〉 = 〈Vd〉
⇀

k, and the averaged
mobility can be conveniently obtained by 〈Zp〉 = 〈Vd〉/E.
We discuss three such cases: fully random, axisymmetric
particles with orientation distribution f (θ ), and a more general
symmetric case with orientation distribution f (ψ ,θ ). The
last two cases are shown in detail in Appendix A1, and the
axisymmetric particle case has been experimentally validated
using gold nanorods in an electric field [5,29]. For a particle

with fully random orientation, the averaged mobility is

〈Zp〉 = 1

3
q

(
1

K1
+ 1

K2
+ 1

K3

)
. (23)

C. Approach III: Mobility of a nonspherical particle
from the averaged-drag force

If Brownian rotation is fast compared to the translational
relaxation time of a nonspherical particle, then Eq. (20) cannot
be applied assuming the particle evolves from one orientation
to another and thus the averaged-drift-velocity approach is
invalid. Considering an extreme situation of rotation around
a single axis for which a 2π rotation is sufficiently fast that
its drift velocity does not respond to the particle orientation
change, the drift velocity can then be treated as independent
of particle orientation and always along the direction of the
external force �k. In this situation, we can think that the external
force is balanced by an orientation averaged drag force with the
form expressed in Eq. (19) along the external force direction,

Fexternal = −〈 �Fdrag〉 · �k = 〈K̂ · �Vd〉 · �k (24)

and

�Vd = Vd
�k. (25)

The prerequisite of this approach suggests that it is valid
for very small ions and for small particles in the free molecu-
lar regime, and is similar to the averaged-collision-integral
approach by averaging the drag force orientationally and
assuming the drift velocity independent of particle orientation.
The difference between the two is that drag force in this
approach is expressed in tensor form while in the averaged-
collision-integral approach the drag force is expressed in
a collision integral or cross-section area. In Sec. IV, we
will show that for a cylindrical rod in the free molecular
regime at random orientation, this approach is identical to
the averaged-collision-integral approach with a short-range
potential (hard collisions). The explicit expressions of the
three principle components of friction coefficient tensor K̂used
in Eq. (24) for hard-body rods and prolate spheroids in free
molecular regimes were provided in Li et al. [28]. A general
expression of friction coefficient tensor for any hard-body
convex particles in free molecular can be obtained in de la
Mora [37] and Garcia-Ybarra and Rosner [38].

Combining Eqs. (24) and (25) and considering the external
force is an electric force, we have

Zp = Vd/E = q/〈�k · K̂ · �k〉. (26)

Expressing Eq. (26) in terms of the Euler angles ϕ, ψ ,
θ , and considering particle orientation distribution function
f (ϕ, ψ , θ ), then Eq. (26) becomes

Zp = q/(K1〈sin2 θ sin2 ψ〉+K2〈sin2 θ cos2 ψ〉+K3〈cos2 θ〉).
(27)

For random oriented particles, the averaged mobility is

Zp = 3q

K1 + K2 + K3
. (28)
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The expressions of the mobility for more orientational
probability cases and the expressions of the averaged drag
forces are shown in Appendix A2.

III. MATERIALS AND EXPERIMENTAL METHODS1

In order to employ a nonspherical particle with a well-
defined size and monodispersity, we chose a colloidal gold
nanorod (Nanopartz Inc.; MUTAB coated conjugated gold
nanorods; 10 nm, SPR = 2000 nm, 0.25 mg, 1 mL; C12N-
10-2000-TMU-0.25) which has a dimensionality of 17 nm ×
270 nm under TEM analysis. Aerosolized gold nanorods were
generated by electrospray (model 3480, TSI Inc.) using a
40-μm inner diameter capillary and operated with a carrier
gas of 1.2 L/min of purified air. The aerosolized particles were
then passed over a radioactive Po-210(α) source to reduce the
charge to a well-defined charge distribution with most neutral
and singly charged particles [39]. The neutralized dry particles
entered a differential mobility analyzer (model 3081 Long
DMA column, TSI Inc.) for particle mobility measurement
and were subsequently counted with an ultrafine CPC (model
3025A, TSI Inc.). By scanning the center rod voltage of the
DMA, different mobility particles can be exacted to build
a mobility distribution for a given particle population. The
mobility can be converted to an equivalent spherical diameter,
(i.e., mobility diameter) which will be discussed in Sec. IV.
The DMA measurement was operated at room temperature
and 1 atm pressure. More details on the measurement method
can be found in Li et al. [6,40] and Guha et al. [41]. The
long DMA was set with a sheath flow of 5 L/min and an
aerosol flow of 0.7 L/min to guarantee the gold nanorods
detected at a very low voltage (�474 V). At this low voltage,
the gold nanorods basically were randomly oriented. To avoid
the effects of time varying electric field as the particles go
through the DMA, we operated the DMA in the step mode,
and kept the step sufficiently long to ensure a complete transit
through the DMA system before the voltage was changed
(45 s).

The mobility size of the gold nanorods was calibrated using
100.7-nm NIST standard reference material (polystyrene latex
spherical particle) [5]. The measurements with the standard
reference material (100.7 nm) and the gold nanorod were
repeated three times respectively, and the assignment of DMA
detection voltage was obtained by averaging the three means of
the Gaussian fits to the experimental profile. The exact sheath
flow value was assigned by measurement of the 100.7-nm
NIST standard reference material at the same condition as the
gold nanorod measurement. Using this calibrated sheath flow
value, the mobility sizes of the gold rod could be determined.

IV. RESULTS AND DISCUSSIONS

The averaged-collision-integral approach considers the
molecular collision mechanism and obtains the averaged

1Mention of commercial equipment, instruments, or materials iden-
tified in this paper does not imply recommendation or endorsement
by the University of Maryland or the National Institute of Standards
and Technology.

mobility of nonspherical particles based on a collision integral
calculation, while the averaged-drag-force approach calculates
particle mobility by averaging the drag force in a tensor
form, but both approaches are proposed for small ions
and for small particles in the free molecular regime, and
both have a common assumption, that the drift velocity is
independent of particle orientation and always along the
direction of external force if the Brownian rotation is fast
compared with the particle translational relaxation process.
We will show that for a cylinder rod in the free molecular
regime at random orientation for short-range interactions (hard
collisions), the averaged-drag-force approach is identical to
the averaged-collision-integral approach. On the other hand,
the averaged-drift-velocity approach assumes that the parti-
cle Brownian rotation is slow compared with the particle
translational relaxation time, so that at each orientation the
drag force is immediately balanced by the external force
and the drift velocity of a nonspherical particle depends on
particle orientation. So the averaged-drift-velocity approach is
expected to apply to relative larger particles. Theoretically, the
averaged-drift-velocity approach and the averaged-drag-force
approach provide two limit mobility values. One way to assess
if the Brownian motion of a cylindrical particle is “slow” or
“fast” by comparing to the particle translational relaxation
process was shown in Li (2012) [30] using the rotational
diffusion coefficient expression in the free molecular regime
[42] and in the continuum regime [43].

Mobility based on the averaged-collision integral can be
calculated using the open source software program MOBCAL.
Similarly, for a convex particle, using the general expression of
friction coefficient tensor [37,38], theoretically, the mobility
for any convex shape could also be obtained using averaged-
drift-velocity or averaged-drag-force approaches for small
ions and for small particles in the free molecular regime.
Without losing generality, in this section, we discuss the
three approaches by applying them to a rod with fully
random orientation where we have analytical expressions.
Then the three approaches will be compared with the ex-
perimental measurement of a gold nanorod (a good example
of a straight rigid rod), and with the calculation results for
GroEL (a protein) in the literature.

For the three approaches applied in this section with fully
random orientation, the expressions of mobility diameters are
summarized in Table II.

A. Application to a rod in fully random orientation
for a short-range interaction (hard collision)

We now compare the calculation results from the three
approaches applied to a rod in a fully random orientation.

The averaged projection area in Eq. (10) for any crystal
structure of ion or particle can be obtained by the open source
software program MOBCAL. For a particle with cylindrical
geometric shape (diameter dr , length Lr ) for hard collisions,
the exact analytical expression is derived as

〈Qpa〉 = π

4

(
drLr + 1

2
d2

r

)
= π

4
d2

r

(
β + 1

2

)
. (29)

The averaged projection area diameter is defined as dpa =√
4〈Qpa〉/π , which has been proved equivalent to the mobility
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diameter dm of a convex particle for short-range interactions
(hard collisions) in the free molecular regime in Sec. IIA.

The average mobility of a fully random rod can also be
obtained by Eqs. (23) and (28) for averaged-drift-velocity
and averaged-drag-force approaches, respectively. Each of the
three principle components of the friction coefficient tensor
(K1, K2, and K3) used in the two approaches for a rod in the
free molecular regime [28] are calculated based on Dahneke
[44]. The averaged mobilities Zp are then converted to an
equivalent spherical diameter dm as

Zp = 2λ(A1 + A2)q

3πηd2
m

, (30)

where, A1 = 1.165, and A2 = 0.483, respectively for solid
particles with averaged free path λ = 67.3 nm for ambient air
at sea level and 23 °C given by Kim et al. [35]. dm is denoted
as dadv from the averaged-drift-velocity approach and as dadf

from the averaged-drag-force approach.
The averaged-drag-force approach for a nanorod in the

free molecular regime at random orientation is identical
to averaged-collision-integral approach with a short-range
potential (hard collision). The mobility of a rod at random
orientation from the averaged-drag-force approach is given by
Eq. (28) where the friction coefficient components K1, K2,
and K3 can be obtained from Dahneke’s drag force expression
of a rod (diameter dr ; length Lr ; aspect ratio β = Lr/dr ) in the
free molecular regime as [Li et al. [28], Eqs. (A1) and (A2)]

K1 = K2 = 1

2φ

πηd2
r

2λ

[(
π − 2

4
β + 1

2

)
f + 2β

]
and

K3 = 1

2φ

πηd2
r

2λ

[(
β + π

4
− 1

)
f + 2

]
,

where ϕ = 0.491 used in Allen and Raabe [33], and ϕ = 0.5
used in Dahneke [44]. Thus, we have

Zp = 3q

K1 + K2 + K3
= 6qλφ

2πηd2
r (1 + πf/8)(β + 1/2)

.

Considering the expression of coefficient of viscosity in
Eq. (15), and the “enhancement factor” in Eq. (11), we obtain

Zp = 1

ξ

3q

16N

√
2π

mrkBT

1

πd2
r (β + 1/2)/4

,

which is exactly equivalent to the mobility of a rod obtained
from the averaged-collision-integral approach in Eq. (13)
considering the averaged projection area 〈Qpa〉 is given by
Eq. (29) for a rod. The mobility diameter and drag force of a rod
are also shown to be identical between the averaged-drag-force
approach and the averaged-collision-integral approach for a
short-range potential (hard collision).

dpa, dadv, and dadf are calculated for rods with various
diameters and aspect ratios in air, and shown in Table III.
Table III shows that the equivalent diameters from the
averaged-collision-integral approach (here an averaged-
projected-area diameter) (dpa) and averaged-drag-force ap-
proach (dadf) are identical to each other, which is a valid test
for Dahneke’s expression of a rod in free molecular regime
[44]. Based on Table III, the averaged-drift-velocity approach

TABLE III. The averaged projected diameter dpa, and the mobility
diameters from averaged-drift-velocity dadv, and averaged-drag-force
approaches dadf , respectively, are shown for various diameters and
aspect ratios of rods with random orientation.

Diameter Aspect ratio dpa = dadf dadv

dr (nm) β (nm) (nm)

1 2 1.6 1.6
1 5 2.3 2.2
1 10 3.2 3.0
1 20 4.5 4.2
5 2 7.9 7.8
5 5 11.7 11.2
5 10 16.2 15.2
5 20 22.6 20.9
15 2 23.7 23.4
15 5 35.2 33.6
15 10 48.6 45.5

provides a smaller mobility diameter (or a larger mobility)
than the other two approaches, which give identical results.

B. Comparing the three approaches with the experimental
result for a gold nanorod

The gold nanorod is a good example of a straight rigid rod
(length Lr � 270 nm and diameter dr � 17 nm from TEM).
One length scale of this gold nanorod is smaller than the mean
free path (�67 nm) and one is larger. As pointed out in one
of our previous works [5], for those dimensions (17 nm ×
270 nm), the free molecule transport properties resulted in bet-
ter agreement with the measured electrical mobility than using
transition theory transport properties. Also, based on literature,
the long-range potential is expected to take some effect only
for very small particles, less than 3 nm [45], so for the gold rod,
the long-range potential can be neglected and hard-collision
expressions are applied. Considering the finite diameter of the
bath gas molecules, dg = 0.3 nm, which increases Lr and dr

by 0.3 nm [7], the calculated values are shown in Table IV.
We note here that for any comparison between experiment and
model, correction for the bath gas should only be performed
for either the model or the experiment, and not both as has
been done in some cases, where the effect was considered
twice [19].

The experimental value of the mobility of gold nanorods
at very low electric field (random orientation) was measured
using the DMA and converted to a mobility diameter of
66.8 ± 0.1 nm based on Eq. (30), which falls between the
two limit values from the averaged-drift-velocity approach,
64.3 nm, and the averaged-drag-force approach of 69.5 nm.
The results are consistent with the assessment in Li (2012,
pp. 165–169) [30] to determine if Brownian motion of a
cylindrical particle is “slow” or “fast,” by scaling to the particle
translational relaxation time. In Li (2012, pp. 165–169) [30],
a characteristic time τ 0 was defined for Brownian rotation,
and compared with the translational relaxation time τ t ,rod =
m/Krandom, where m is the mass of the rod, 1/Krandom =
2/K1 + 1/K3, and K1, K3 were given in the previous section for
a rod in the free molecular regime. Based on Li’s estimation,
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TABLE IV. The gold nanorod experimental mobility diameter from DMA is compared with the three diameters calculated from three
approaches. The experimental value falls in between the two limit values from averaged-drift-velocity and averaged-drag-force approaches.

Diameter Aspect ratio Experimental mobility diameter dpa = dadf (nm) dadv (nm)
dr (nm) β by DMA (nm)

17.3 270.3/17.3 66.8 ± 0.6a 69.5 ± 2.7b 64.3 ± 2.5b

aThe experimental mobility diameter of the gold nanorod reported in one of our previous works [5] was converted from measured mobility
based on Cunningham’s slip correction factor instead of its limit at the free molecular regime, i.e., Eq. (30), thus is different from the mobility
diameter shown above. The combined uncertainty for mobility size is based on three repeat experiments, the 0.47% uncertainty in the 100.7-nm
calibration standard, and the flow rate calibration using 100.7-nm standards.
bThe uncertainty for mobility size is from the 4% uncertainty in the TEM measurement.

if τ 0/τ t,rod < 1, then Brownian rotation is considered fast, and
the averaged-drag-force approach applies. If τ 0/τ t ,rod > 482,
Brownian rotation is considered slow, and the averaged-drift-
velocity approach applies. Using the density of bulk gold,
the translational relaxation time of the randomly oriented
gold nanorod is calculated �3.8 × 10−7 s, and τ 0/τ t ,rod is
�50, and the mobility should fall between the two limits,
which in fact it does based on the experimental results in
Table IV.

C. Comparing the three approaches for the GroEL protein

The geometric approximation for the protein GroEL 14-mer
is a cylinder with a length L � 14 nm, and as base diameter
�13 nm [13,19]. Using atomic coordinates derived from x-ray
diffraction data of GroEL 14-mer and using a modified version
of software program MOBCAL [2,4], the averaged projection
area has been calculated to be 220 nm2 in one source [13], and
217.6 nm2 in another [19]. To compare with the result from
the software program, Hogan et al. [19] used a heptagonal
cylinder to represent the protein and obtained a projected area
of 197 nm2 considering the finite diameter of air 0.3 nm [7].

Using the three approaches in this work and approximating
GroEL as a rod with length = 14.3 nm and diameter = 13.3 nm
accounting for the finite diameter of air 0.3 nm [7], we calculate
the results for GroEL in Table V. The projected area 〈�pa〉 is
based on Eq. (29). Aadv and Aadf are equivalent areas converted
from dadv and dadf by A=πd2/4, respectively. All three values,
218.8, 218.8, and 218.8 nm2, from the three approaches in this
work are very close to the reported projected areas, 217.6 and
220 nm2 [13,19]. The quality of this result is probably better

than should be expected given the uncertainty in the equivalent
cylinder dimensions of the molecule.

V. CONCLUSIONS

We propose an approach to obtain the mobility of nonspher-
ical particles by averaging the drag force orientationally, and
summarize and extend two other approaches common in the
literature for particles in the free molecular regime, averaged-
collision-integral and averaged-drift-velocity. In the averaged-
collision-integral approach, the inelastic interaction, which has
been commonly ignored in most literature, was considered and
the collision integral theory for a spherical particle in Li and
Wang [8] was extended to a convex nonspherical particle. The
focus of the analysis was on hard collision though the general
expression for a long-range force is included. This extended
collision integral was derived and simplified to an averaged
projection area multiplied by an enhancement factor for hard
collisions. This enhanced factor was well used in literature
based on the theory of spherical particles. We have derived this
enhancement factor based on kinetic theory by applying the
approach of Shvarsburg and Jarrold [2] to diffuse reflections.
We also showed that the averaged projection area of a convex
particle for hard collisions is equal to its mobility diameter.
The approach of Li et al. [28] for computing the average
mobility for an axially symmetric particle by averaging its
drift velocity has been further extended to a general form
and for more symmetric cases. We also pointed out that this
averaged-drift-velocity approach is only valid for relatively
large particles where the Brownian rotation is slow compared
with the particle translational relaxation time. For very small
ions and particles where the Brownian rotation is fast compared

TABLE V. Using the three approaches in this work and approximating GroEL as a rod with length = 14.3 nm and diameter = 13.3 nm
accounting for the finite diameter of air 0.3 nm, we calculated the results of GroEL in the table, and compared to the values from software
program using the crystal structure of GroEL, and also compared with the value calculated from Hogan’s model.

〈�pa〉 〈�pa〉 〈�pa〉 〈�pa〉 = Aadf Aadv

Obtained from Obtained from Hogan’s model this work
Diameter Aspect ratio MOBCAL MOBCAL (nm2) this work (nm2)
dr (nm) β (nm2) (nm2) (nm2)

13.3 14.3/13.3 217.6a 220b 197a 218.8 218.8

aHogan et al. [19].
bvan Duijn et al. [13].
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with the particle translational rotation we propose an averaged-
drag-force approach which calculates particle mobility by
averaging the drag force in a tensor form. The three approaches
were then compared with each other by being applied to a
randomly oriented rod. We show that for a cylinder in the free
molecular regime at random orientation, the averaged-drag-
force approach is identical to the averaged-collision-integral
approach with short-range potentials. We also compared the
calculation results of the three approaches to the experimental
value of monodisperse gold nanorods, which are rigid rods, and
showed that the experimental value falls between the two limit
calculated values from the averaged-drift-velocity approach
and the averaged-drag-force approach as expected. Finally,
we showed that the calculation results for GroEL protein from
the software programs in the literature are in good agreement
with our calculations using the three approaches in this work.

APPENDIX A: EULER ANGLES �, �, �, AND THE
DERIVATIONS IN AVERAGED-DRIFT-VELOCITY

APPROACH AND AVERAGED-DRAG-FORCE APPROACH

A space fixed coordinate system (x, y, z) with unit vector
(�i, �j,�k) respectively, and a particle body fixed coordinate
system (x ′,y ′,z′) with unit vector (�i ′, �j ′,�k′) are shown in

Fig. 1, where z direction (unit vector
⇀

k) is chosen along
the external force direction. Three Euler angles ϕ, ψ , θ ,
relate the body fixed coordinate system to the space fixed
one [46].

Assuming that the friction coefficient is in a tensor form,
the drag force is expressed as [22]

�Fdrag = −K̂ · �Vd, (A1)

where K̂ is the friction coefficient tensor and
⇀

V d is the drift
velocity of the particle.

z 

Line of nodes 

z’ 

y 

x 

x’ 

y’ 

FIG. 1. (Color online) Three Euler angles ϕ, ψ , θ , relate the
particle body fixed coordinate system (x ′, y ′, z′) to the space fixed
coordinate system (x, y, z).

1. The velocity and mobility expressions
in averaged-drift-velocity approach

Assuming at each orientation of the particle the drag force
is balanced by the electric force, we obtain

K̂ · �Vd = q �E (A2)

and

�Vd = qK̂−1 · �E. (A3)

If we define the particle body fixed coordinate system (�i ′, �j ′,�k′)
parallel to the three principal axes of the tensor K̂ of the
particle, then

⇀

V d = Vd,x

⇀

i + Vd,y

⇀

j + Vd,z

⇀

k,

Vd,x = qE
(
K−1

1 a1 + K−1
2 a2 + K−1

3 a3
)
,

Vd,y = qE
(
K−1

1 b1 + K−1
2 b2 + K−1

3 b3
)
,

Vd,z = qE
(
K−1

1 c1 + K−1
2 c2 + K−1

3 c3
)
,

a1 = cos ψ cos ϕ sin θ sin ψ − cos θ sin ϕ sin2 ψ sin θ,

a2 = − sin ψ cos ϕ sin θ cos ψ − cos θ sin ϕ cos2 ψ sin θ,

a3 = sin θ sin ϕ cos θ,

b1 = cos ψ sin ϕ sin θ sin ψ + cos θ sin ϕ sin2 ψ sin θ,

b2 = − sin ψ sin ϕ sin θ cos ψ + cos θ cos ϕ cos2 ψ sin θ,

b3 = − sin θ cos ϕ cos θ,

c1 = sin2 θ sin2 ψ, c2 = sin2 θ cos2 ψ, c3 = cos2 θ,

where K1, K2, and K3 are three principal components of the
friction coefficient tensor.

If particle orientation follows a distribution function f (ϕ,
ψ , θ ), then

〈 �Vd〉⇀
k

= 〈Vd,z〉
= qE

(
K−1

1 〈sin2 θ sin2 ψ〉 + K−1
2 〈sin2 θ cos2 ψ〉

+K−1
3 〈cos2 θ〉). (A4)

In some specific situations, such as f (ϕ, ψ , θ ) = f (ψ , θ ),
f (ϕ, ψ , θ ) = f (θ ), or f (ϕ, ψ , θ ) = 1/8π2, 〈Vd,x〉 and 〈Vd,y〉
vanish, and we have 〈 �Vd〉 = 〈Vd,z〉

⇀

k or 〈 �Vd〉 = 〈Vd〉
⇀

k, i.e., the
averaged drift velocity 〈 �Vd〉 only has one component along the

external force direction (
⇀

kdirection), and the averaged mobility
can be conveniently obtained by 〈Zp〉 = 〈Vd〉/E. We discuss
three such cases below.

(i) Fully random [22]. The averaged mobility is

〈Zp〉 = 1

3
q

(
1

K1
+ 1

K2
+ 1

K3

)
. (A5)

(ii) Axisymmetric particles with orientation distribution
f(θ ) [28]. For axially symmetric particles, K1 = K2 = K⊥
where K⊥is the principal component of the friction coefficient
tensor perpendicular to the axial direction and K3 = K‖ where
K‖ is the component parallel to the axial direction. If the
orientation distribution can be expressed as f (θ ), for example,
the axisymmetric particles orientated based on Boltzmann

022112-9



LI, MULHOLLAND, AND ZACHARIAH PHYSICAL REVIEW E 89, 022112 (2014)

angular distribution due to Brownian rotation (Appendix B),
we obtain

〈Zp〉 = q[K−1
⊥ + (K−1

‖ − K−1
⊥ )〈cos2 θ〉], (A6)

where 〈cos2 θ〉 = ∫ π

0 cos2 θf (θ ) sin θdθ is the orientationally
averaged cos2(θ ) and

∫ π

0 f (θ ) sin θdθ = 1.

The calculation of Eq. (A6) was described in detail in
Li et al. [28] and showed that the averaged mobility is
a function of particle orientation which in turn depends
on the magnitude of the electric field. Equation (A6) was
experimentally verified using gold nanorods [5,29].

(iii) More general symmetric case with orientation distribu-
tion f(ψ , θ ). One can extend the axisymmetric case above to a
more symmetric case where the orientation distribution f (ψ ,θ )
is only a function of ψ and θ , for example a uniform right
angled parallelepiped orientated based on Boltzmann angular
distribution due to Brownian rotation (Appendix B). In this
case the mobility becomes

〈Zp〉 = q
(
K−1

1 〈sin2 θ sin2 ψ〉 + K−1
2 〈sin2 θ cos2 ψ〉

+K−1
3 〈cos2 θ〉). (A7)

Furthermore, if K1 = K2, such as a uniform right angled
parallelepiped with square bases, Eq. (A7) becomes

〈Zp〉 = q
[
K−1

1 + (
K−1

3 − K−1
1

)〈cos2 θ〉]. (A8)

We note that all the averaging above is related to orientation
distribution f (ψ , θ ). All the averages above are related to
orientation distribution f (ψ , θ ) as

〈X〉 =
∫ 2π

0
dϕ

∫ π

0
dθ sin θ

∫ 2π

0
dψf (ψ,θ )X(ψ,θ )

= 1

2π

∫ π

0
dθ sin θ

∫ 2π

0
dψf (ψ,θ )X(ψ,θ ). (A9)

If K1 = K2 = K3 such as a uniform cubic,

〈Zp〉 = qK−1
1 . (A10)

2. The drag force expressions in averaged-drag-force approach

In the averaged-drag-force approach, we can think that the
external force is balanced by an orientation averaged drag force
with the form expressed in Eq. (A1) along the external force
direction,

Fexternal = −〈 �Fdrag〉 · �k = 〈K̂ · �Vd〉 · �k (A11)

and

�Vd = Vd
�k. (A12)

Combine Eqs. (A11) and (A12) and consider that the
external force is an electric force; we have

qE = Vd〈�k · K̂ · �k〉
and

Zp = Vd/E = q/〈�k · K̂ · �k〉. (A13)

If we define the particle body fixed coordinate system
(�i ′, �j ′,�k′) parallel to the three principal axes of the tensor K̂ of

the particle, then

〈K̂ · �k〉i = K1〈a1〉 + K2〈a2〉 + K3〈a3〉,
〈K̂ · �k〉j = K1〈b1〉 + K2〈b2〉 + K3〈b3〉,
〈K̂ · �k〉k = 〈�k · K̂ · �k〉 = K1〈c1〉 + K2〈c2〉 + K3〈c3〉,

where K1, K2, and K3 are three principal components. The
expressions of a1 to c3 were shown in Appendix A1. If particle
orientation follows a distribution function f (ϕ, ψ , θ ), then
Eq. (A13) becomes

Zp = q/(K1〈sin2 θ sin2 ψ〉+K2〈sin2 θ cos2 ψ〉+K3〈cos2 θ〉).
(A14)

All the averages in the above formula are related to orientation
distribution f (ϕ, ψ , θ ) in the form of Eq. (8) in the main text.

Based on Eq. (A12), the averaged drag force can be
expressed as

〈 �Fdrag〉 = −〈K̂ · �Vd〉 = −〈K̂ · �k〉Vd.

In symmetric situations, such as f (ϕ, ψ , θ ) = f (ψ , θ ), f (ϕ,
ψ , θ ) = f (θ ), or f (ϕ, ψ , θ ) = 1/8π2, 〈K̂ · �k〉i and 〈K̂ · �k〉j
vanish, and we have

〈 �Fdrag〉 = −〈�k · K̂ · �k〉Vd
�k. (A15)

Applying Eqs. (A15) and (A13) above to three symmetric
situations, we have the following:

(i) Fully random,

〈 �Fdrag〉 = −K1 + K2 + K3

3
Vd

�k, (A16)

Zp = 3q

K1 + K2 + K3
. (A17)

(ii) Axisymmetric particles; orientation distribution f (θ ),

〈 �Fdrag〉 = −[K⊥ + (K‖ − K⊥)〈cos2 θ〉]Vd

⇀

k, (A18)

Zp = q

K⊥ + (K‖ − K⊥)〈cos2 θ〉, (A19)

where 〈cos2 θ〉 = ∫ π

0 cos2 θf (θ ) sin θdθ is the orientationally
averaged cos2(θ ) and

∫ π

0 f (θ ) sin θdθ = 1.

(iii) More general symmetric case with orientation distri-
bution f (ψ , θ ). If orientation distribution function f (ψ , θ ) is
only a function of ψ , θ , for example, a uniform right angled
parallelepiped, then

〈 �Fdrag〉 = −(K1〈sin2 θ sin2 ψ〉 + K2〈sin2 θ cos2 ψ〉
+K3〈cos2 θ〉)Vd

⇀

k, (A20)

Zp = q

K1〈sin2 θ sin2 ψ〉 + K2〈sin2 θ cos2 ψ〉 + K3〈cos2 θ〉 .
(A21)

If K1 = K2, such as a uniform right angled parallelepiped with
square top and bottom,

〈 �Fdrag〉 = −[K1 + (K3 − K1)〈cos2 θ〉]Vd

⇀

k, (A22)

Zp = q

K1 + (K3 − K1)〈cos2 θ〉 . (A23)
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All the averages above related to orientation distribution
f (ψ , θ ) are defined as in Eq. (A9). If K1 = K2 = K3 such

as a uniform cubic, 〈 �Fdrag〉 = −K1Vd

⇀

k.

APPENDIX B: ORIENTATION DISTRIBUTION
DUE TO BROWNIAN ROTATION

If the particles are small enough, over the time scale of
interest, the rotational Brownian motion will result in a steady
state distribution of the orientation, i.e., Boltzmann angular
distribution,

f (ϕ,ψ,θ ) = e−U/kT∫ 2π

0 dϕ
∫ π

0 dθ sin θ
∫ 2π

0 dψe−U/kT
,

where
∫ 2π

0 dϕ
∫ π

0 dθ sin θ
∫ 2π

0 dψf (ϕ,ψ,θ ) = 1, and U is the
interaction energy between the particle and the external electric
field and is addressed in detail in Li et al. [28].

(i) Symmetric case with orientation distribution f(ψ , θ ). If
the interaction energy U is only a function of ψ , θ , then f (ϕ,
ψ , θ ) becomes f (ψ , θ ). Following we give an example by
only considering the polarization energy Up, that is, U = Up.

The interaction energy U is dominated by polarization energy
Up [5] and Up is given by [47]

Up = − 1
2

⇀

E · α̂ · ⇀

E,

where α̂ is the polarizability tensor. If we assume that U =
Up, then as long as the three principal axes of the friction
coefficient tensorK̂ are the same as for polarizability tensor α̂,
for example, a uniform right angled parallelepiped, f (ϕ, ψ , θ )
becomes f (ψ , θ ),

f (ψ,θ) = e−Up/kT

1
2π

∫ π

0 dθ sin θ
∫ 2π

0 dψe−Up/kT
, (B1)

where Up = −E2

2 (α1 sin2 θ sin2 ψ + α2 sin2 θ cos2 ψ +
α3 cos2 θ ) and (α1, α2, α3) are the principal components of
the polarizability tensor.

(ii) Axisymmetric particles with orientation distribution
f(θ ) [28]. The expression of Boltzmann angular distribution
of f (θ ) for axisymmetric particles was described in detail in
Li et al. [28].

APPENDIX C: SIMPLIFYING THE AVERAGED
COLLISION INTEGRAL IN EQ. (5) FOR A CONVEX

PARTICLE WITH HARD COLLISIONS

If we extend Epstein’s approach for a convex particle and
simplify the collision calculation by still treating the particle
surface as a smooth surface, then we need to compensate our
calculation by incorporating a term of inelastic collisions (or
diffuse reflections). And the orientationally averaged collision
integral for a convex particle with rough surface is

〈�〉 = f 〈�d〉 + (1 − f )〈�s〉, (C1)

where �S and �d are derived based on Li and Wang [8] as

�S(ϕ,ψ,θ ) =
(

mr

2kBT

)3 ∫ ∞

0
dg exp

(
− g2

2kBT /mr

)
g5

×
∫ bmax

0
db{2πb[1 − cos χ (ϕ,ψ,θ,g,b)]},

(C2)

�d (ϕ,ψ,θ )

=
(

mr

2kBT

)3 ∫ ∞

0
dg exp

(
− g2

2kBT /mr

)
g5

×
∫ bmax

0
db

{
2πb

[
1 + 1

g

√
πkBT

2mr

sin
χ (ϕ,ψ,θ,g,b)

2

]}
.

(C3)

χ (ϕ,ψ,θ,g,b) is the scattering angle given by Li and Wang
[2003, Eq. (16)] [8] [the long-range potential is included in
the expression of χ (ϕ,ψ,θ,g,b)], g is the relative velocity,
b is the impact parameter, bmax is the maximum extent of
the particles in the radial direction. With the orientationally
averaged collision integral 〈�〉 for a nonspherical convex
particle in Eq. (C1), the drag force and the mobility are given
by Eqs. (1) and (3) in the main text respectively.

If we only consider hard collisions and ignore long-range
potential, the specular collision integral Eq. (C2) is equivalent
to cross section Qs [8,32],

�S = Qs = 2π

∫ bmax

0
b[1 − cos χ ]db, (C4)

and the diffuse collision integral [Eq. (C3)] is equivalent to
cross section Qd

�d = Qd = 2π

∫ bmax

0
b

[
1 + 3π

16
sin

χ

2

]
db. (C5)

We note here that in the extended Epstein’s approach, that
is, Eq. (C1), both 〈�s〉 and 〈�d〉 should be calculated assuming
the particle surface is smooth. Using the idea in Shvartsburg
and Jarrold [2], we will show below that under this condition
the two averaged collision integrals 〈�s〉 and 〈�d〉 can be

incident specular reflected 

dS

x ξ

FIG. 2. (Color online) Demonstrating an incident molecule hit-
ting small area dS on a convex particle and showing the relationship
between angle χ and angle ζ .
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further simplified to the averaged projected area multiplied by
a factor.

Considering an infinitesimally small surface of a convex
particle with area dS and the angle between the normal
direction of this surface and the molecule incident direction is
ζ as shown in Fig. 2, the relationship between ζ and χ is

ζ = χ + π

2
and the projected area is

apa = −dS cos ζ.

Based on Eq. (C4), the specular collision integral element
for this small surface is

ωS = (1 − cos χ )apa = (1 − cos χ )(− cos ζ )dS

= −2 cos3 ζdS.

Averaging apa and ωs over all possible values of ζ from
π/2 to π , we obtain

〈apa〉 =
2π

∫ π

π/2 apa sin ζdζ

2π
∫ π

π/2 sin ζdζ
= dS

2
(C6)

and

〈ωs〉 =
2π

∫ π

π/2 ωs sin ζdζ

2π
∫ π

π/2 sin ζdζ
= dS

2
. (C7)

Based on Eqs. (C6) and (C7), we have 〈apa〉 = 〈ωs〉. Since
any finite geometric surface can be considered as a set of
infinitesimally small surfaces above, then the total averaged
specular collision integral 〈�s〉 is the sum of 〈ωs〉, as long
as there is no mutual shadowing of small surfaces and no
multiple collisions where molecules are reflected from one

small surface to another, which are satisfied by a convex and
smooth surface. The total averaged projection area 〈�pa〉 is the
sum of 〈apa〉. So one concludes for any convex particle with a
smooth surface

〈�s〉 = 〈�pa〉 (C8)

Similarly, the diffuse collision integral element of Eq. (C3)
for the infinitesimally small surface above is

ωd =
(

1 + 3π

16
sin

χ

2

)
apa

=
(

1 + 3π

16
sin

χ

2

)
(− cos ζ )dS

=
(

1 − 3π

16
cos ζ

)
cos ζdS.

Averaging ωd over all possible values of ζ from π/2 to π ,
we obtain

〈ωd〉 =
2π

∫ π

π/2 ωd sin ζdζ

2π
∫ π

π/2 sin ζdζ
=

(
π

8
+ 1

)
dS

2

=
(

π

8
+ 1

)
〈apa〉,

which results in, for any convex particle with a smooth surface,

〈�d〉 =
(

π

8
+ 1

)
〈�pa〉. (C9)

Combining Eqs. (C1), (C8), and (C9), we obtain the
averaged collision integral for a convex particle with hard
collisions as

〈�〉 =
(

1 + πf

8

)
〈�pa〉. (C10)
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