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ABSTRACT
We use a self-consistent field method, which we have previously validated, to calculate the translational
friction coefficient of fractal aerosol particles formed by diffusion-limited cluster aggregation (DLCA). Our
method involves solving the Bhatnagar–Gross–Krook model for the velocity around a sphere in the
transition flow regime. The velocity and drag results are then used in an extension of Kirkwood–Riseman
theory to obtain the drag on the aggregate. Our results span a range of primary sphere Knudsen numbers
from 0.01 to 100 for clusters with up to N D 2000 primary spheres. Calculated friction coefficients are in
good agreement with experimental data and approach the correct continuum and free molecule limits
for small and large Knudsen numbers, respectively. Results show that particles exhibit more continuum-
like behavior as the number of primary spheres increase, even when the primary particle is in the free
molecule regime; as an illustrative example, the friction coefficient for aggregates with primary sphere
Kn D 1 is approximately equal to the continuum friction coefficient for N > 500. We estimate that our
calculations are within 10% of the true values of the friction coefficients for the range of Kn and N
presented here. Finally, we use our results to develop an analytical expression (Equation (38)) for the
friction coefficient over a wide range of aggregate and primary particle sizes.

EDITOR
Yannis Drossinos

1. Introduction

Aerosol particles formed at high temperature are often
fractal aggregates described under the assumption of
equally sized spherical primary particles as

N D k0
Rg

a

� �df

; ½1�

whereN is the number of primary spheres,Rg is the radius of
gyration of the agglomerate, a is the primary sphere radius,
and df and k0 are the fractal dimension and prefactor.

The transport properties of these particles (e.g., the
diffusion coefficient, settling velocity, and electrical
mobility) can be related to the particle scalar friction
coefficient z, which is defined by the relationship
between the drag force and the relative velocity between
the particle and the fluid,

!
Fd D z

!
uf ¡!

up
� �D z

!
U ; ½2�

where
!
uf and

!
up are the velocities of the fluid and

the particle, respectively. Knowledge of the friction

coefficient is crucial to predicting particle diffusional,
phoretic, and electrostatic behavior in real-world
applications.

For the simple case of a sphere with radius a, the fric-
tion coefficient is given by Stokes’ law,

z D 6pma
Cc Knð Þ ; ½3�

where m is the gas viscosity, Kn D λ/a is the Knudsen
number, λ is the gas mean free path, and Cc is the Cun-
ningham slip correction factor,1

Cc Knð ÞD 1CKn ACB exp ¡ C
Kn

� �� �
: ½4�

Spheres that are very large compared to the mean free
path (Kn! 0) are in the continuum regime. In this case,
the slip correction is unity, and the continuum friction
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Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/uast.
1In this article, we define the viscosity by the relation mD 0:499rcλ, where r is the gas density and c is the mean thermal speed. This expression describes a
hard sphere gas. Furthermore, we use Davies’ coefficients (AD 1.257, B D 0.4, and C D 1.1) in the slip correction factor.
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factor is simply

zc D 6pma: ½5�

Spheres that are very small compared to the mean free
path are in the free molecule regime, where the friction
coefficient is given by Epstein’s equation

zFM D p 8Capð Þ
2:994

m

λ
a2: ½6�

The momentum accommodation coefficient a is equal
to unity for purely diffuse reflection and zero for purely
specular reflection at the surface of the particle. Epstein
(1924) determined that most collisions are diffuse.

Determination of the friction coefficient is much more
complicated for fractal aggregates. In the continuum
regime, the friction coefficient is given by

z D 6pm RH ; ½7�

where RH is the particle hydrodynamic radius, which
may be obtained by applying either the Kirkwood–
Riseman (Chen et al. 1984; Meakin et al. 1985; Meakin
and Deutch 1987; Lattuada et al. 2003) or Hubbard–
Douglas (Hubbard and Douglas 1993; Zhou et al. 1994)
method. For the free molecule regime, one can obtain
the friction coefficient using a ballistic approach (Chan
and Dahneke 1981; Meakin et al. 1989; Mackowski
2006), such that the friction coefficient is related to the
orientation-averaged projected area of the particle.

Both computational and experimental results seem to
support power-law-type relationships between the num-
ber of primary spheres in the aggregate and the friction
coefficient:

zDANh: ½8�

Sorensen (2011) reviewed available experimental data
for particles formed by diffusion-limited cluster aggrega-
tion (DLCA) and proposed exponents of 0.46 for N <

100 and 0.56 for N > 100 in the continuum regime and
0.92 for all N in the free molecule regime.

In many practical applications, the primary sphere
radius is smaller than the gas mean free path, such
that the primary spheres may be in the free molecule
flow regime. For situations in which the primary
sphere Knudsen number is in the free molecular
regime, many researchers (Chan and Dahneke 1981;
Meakin et al. 1989; Mackowski 2006) have used free
molecular techniques to compute the scalar friction
coefficient for fractal aerosol particles. However, the
agglomerate size characterized by the radius of

gyration may be comparable to or larger than the
mean free path, which leads to some ambiguity about
the appropriate flow regime. Therefore, an alternate
approach is needed to determine the friction coeffi-
cient for particles whose geometric measures (primary
sphere radius and radius of gyration) lie in the transi-
tion flow regime.

To date, most of the approaches for transition regime
drag are based on extrapolation of free molecule or con-
tinuum methods to the transition regime or power-law
fits to experimental data. One exception is the adjusted
sphere method (ASM) developed by Dahneke (1973)
and Zhang et al. (2012), which applies a slip correction
to the continuum drag based on an aggregate Knudsen
number,

zASM D 6pm RH

Cc.Knagg/
½9�

Knagg D p λ RH

PA
; ½10�

where the hydrodynamic radius RH and the projected
area PA are continuum and free molecular measures of
particle size, respectively. Zhang et al. (2012) found good
agreement between the friction coefficient computed
using the adjusted sphere method and direct simulation
Monte Carlo (DSMC) results for a dimer and for open
(df D 1:78, k0D 1:3) and dense (df D 2:5, k0D 1:5)
20-particle aggregates for a range of aggregate Knudsen
numbers. For this approach, one must obtain the hydro-
dynamic radius and projected area, either through trans-
mission electron microscopy (TEM) analysis or through
moderately expensive computational models mentioned
previously.

Recently, we developed a self-consistent field
method to compute the friction coefficient for a frac-
tal aggregate across the entire Knudsen range (Corson
et al. 2017). This method is based on Kirkwood–
Riseman theory for the drag on a particle or macro-
molecule in continuum flow. Initial applications of
the self-consistent method show good agreement with
DSMC results (Zhang et al. 2012) and with the
adjusted sphere method.

In this work, we apply our self-consistent field method
to compute the scalar friction coefficient for a wide range
of primary sphere radii and aggregate sizes. We compare
our results to experimental data in the literature (Shin
et al. 2009, 2010) and to the predictions of other models
that have been developed for the transition regime,
including the adjusted sphere method and the correla-
tions developed by Rogak et al. (1993), Lall and Fried-
lander (2006), and Eggersdorfer et al. (2012).
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2. Theoretical methods

2.1. Kirkwood–Riseman theory

Consider an aggregate consisting of N identically sized
spherical particles of radius a. Kirkwood and Riseman
(1948) demonstrated that the force on the ith spherical
element can be obtained by considering the effects of all
the other elements on the fluid flow pattern, as described
by

!
Fi D z0

!
Ui ¡ z0

XN
i 6¼j

T
$
ij�

!
Fj ½11�

Here, z0 D 6pma is the friction coefficient on the pri-
mary spheres as given by Stokes’ law,

!
Ui is the unper-

turbed (or free stream) velocity of the fluid at particle i,2

and T
$

ij is the hydrodynamic interaction tensor. The orig-
inal version of the theory uses the Oseen tensor for T

$
ij.

Later researchers extended this approach to fractal
aerosol particles (Chen et al. 1984; Meakin et al. 1985;
Meakin and Deutch 1987) and colloids (Lattuada et al.
2003). These later studies used the modified form of the
Oseen tensor derived independently by Rotne and Prager
(1969) and Yamakawa (1970):

T
$
ij D 1

8pmrij
I
$C

!
rij

!
rij
r2ij

 !
C 2a2

3r2ij
I
$¡ 3

!
rij

!
rij

r2ij

 !" #
: ½12�

Here,
!
rij is the vector from the ith particle to the jth

particle.
These applications of Kirkwood–Riseman theory

involve objects in continuum flow. We now wish to
extend this approach to the transition flow regime, using
appropriate expressions for the friction coefficient z0 and
the hydrodynamic interaction tensor T

$
ij.

We start by dividing Equation (11) by the friction
coefficient to give the fluid velocity at a point

!
ri

!
u

!
ri
� �D!

Ui¡
XN
i6¼j

T
$
ij�

!
Fj: ½13�

In other words, the fluid velocity at a point is the sum
of the free stream velocity and the velocity perturbations
caused by each primary sphere in the particle.

For uniform Stokes flow around an isolated sphere,
the velocity obtained by solving the Navier–Stokes

equation can be written in the form

!
u

!
r
� �D!

U ¡V
$�!U ; ½14�

where

V
$ !

r
� �D 3a

4r
I
$C

!
r

!
r
r2

� �
C a2

3r2
I
$¡ 3

!
r

!
r

r2

� �� �
½15�

is the velocity perturbation tensor at the point
!
r and r is

the distance of that point from the origin (i.e., the center
of the sphere). We can also write the velocity as

!
u rð ÞD!

U ¡T 0$
rð Þ�!F ; ½16�

where

T 0$
rð Þ � V

$ !
rð Þ

z0
D 1

8pmr

"
I
$C

!
r

!
r
r2

� �

¡ a2

3r2
I
$C 3

!
r

!
r

r2

� �#
½17�

and
!
F D z0

!
U is the drag force on the sphere.

The tensor T
$0 is the same as the Rotne and Prager

hydrodynamic interaction tensor (Equation (12)), with
the exception of the factor of 2 in the r¡ 3 term. Since we
are primarily concerned with the velocity perturbation at
distances greater than 2a from the sphere, we can ignore
the factor of 2 with minimal error and replace T

$
ij in

Equation (11) with T
$0 . Now, the drag force on the ith

sphere of a fractal particle is

!
Fi D z0

!
Ui ¡

XN
i 6¼j

V
$

ij�
!
Fj; ½18�

where V
$

ij is the velocity perturbation at the ith sphere
caused by the jth sphere.

Of course, there is no reason to make the approxima-
tion T

$0 .!r/ � T
$

ij.
!
r/ for continuum flow. However, this

approximation allows us to extend Kirkwood–Riseman
theory to the transition regime because solving for the
velocity profile around an isolated sphere in the transi-
tion regime is considerably easier than explicitly consid-
ering the hydrodynamic interaction between two spheres
in the transition regime. Numerous solutions of the for-
mer problem are available in the literature (Sone and
Aoki 1977; Lea and Loyalka 1982; Law and Loyalka
1986; Takata et al. 1993), whereas we have not been able
to find any reference to the latter problem.

Before we proceed further with our derivation of the
force on a fractal aggregate in the transition regime, we2If the flow is uniform, then

!
U i D

!
U 0, where

!
U 0 is the uniform velocity.
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will first consider the solution of the kinetic equation for
the velocity around a sphere.

2.2. Flow around a sphere

Consider steady flow around a sphere in the transition
regime. The gas density, velocity, and temperature far
from the sphere are r1 , U

*
1 , and T1 , respectively. In

the absence of external forces, the Boltzmann equation
can be written as

!
c�rf

!
r;

!
c

� �D df
dt

���
coll

; ½19�

where f is the velocity distribution function and
!
c is the

gas molecular velocity. The right-hand side of Equa-
tion (19) is the collision operator, which describes the
evolution of the distribution function as a result of colli-
sions between gas molecules. The full collision operator
is exceedingly complicated, so we will consider the sim-
plified collision operator proposed by Bhatnagar et al.
(1954):

df
dt

���
coll; BGK

D n½f0 !
r;

!
c

� �¡ f
!
r;

!
c

� ��: ½20�

Here, n is the collision frequency and f0 is the Max-
wellian velocity distribution at point

!
r

f0
!
r;

!
c

� �D n
m

2p kBT

� �3 6 2

exp ¡ m j !
c¡!

U j 2
2kBT

 !
; ½21�

where m is the mass of a gas molecule, kB is the Boltz-
mann constant, and n,

!
U , and T are the local gas number

density, bulk velocity, and temperature. Essentially, the
BGK model assumes that the non-equilibrium distribu-
tion f relaxes to the equilibrium distribution f0 after one
collision, with the collision frequency given by nD p 6 m,
where p is the gas pressure.

If the velocity of the gas around the sphere is small
relative to the thermal speed of the gas molecules and
the perturbation caused by the sphere is relatively small,
then the distribution function can be linearized, giving

f
!
r;

!
c

� � � f1 ½1C 2
!
c�!U 1 C h

!
r;

!
c

� ��: ½22�

The Maxwellian distribution f1 represents a gas with
zero velocity at the far-away gas density and tempera-
ture. The first two terms of the linearization represent
the distribution far from the sphere, while the function h
represents the perturbation to the distribution caused by
the sphere. Likewise, the linearized local Maxwellian

distribution can be written as

f0
!
r;

!
c

� � � f1 1C 2
!
c�!U 1 C e1 C!

c�!e2 C c2¡ 3
2

	 

e3

h i
;

½23�

where e1,
!e2, and e3 are perturbations to the density,

velocity, and temperature of the gas defined below as
moments of the distribution function h.

Now define the following non-dimensional variables:

f � D f n
m

2kBT

� �36 2" #¡ 1

Dp¡ 3 6 2exp ¡ j !
c � ¡!

U � j 2� �
!
c � D!

c
m

2kBT

� �16 2

!
r � D

!
r
n

m
2kBT

� �1 6 2
D!
r

ffiffiffi
p

p
1:996λ

½24�
The final expression for the non-dimensional radius

makes use of the previously defined expressions for the
collision frequency and the viscosity of a hard sphere
gas. With these definitions, the linearized, non-dimen-
sional BGK equation is

!
c � �rhD e1C!

c � �!e2C c�2¡ 3
2

	 

e3¡ h ½25�

with the moments related to the gas number density,
velocity, and temperature by

n
n1

D 1C e1D 1Cp¡ 3 6 2
Z

h exp ¡ c�2� �
d

!
c�

!
U � D!

U�1 C 1
2

!
e2D!

U 1 � Cp¡ 3 6 2
Z

h
!
c exp ¡ c�2� �

d
!
c�

T
T1

D 1C e3 D 1C 2
3
p¡ 36 2

Z
h c�2¡ 3

2

	 

exp ¡ c�2� �

d
!
c�

:

½26�

The integrals in the moment equations represent tri-
ple integrals over the entire molecular velocity space.
The boundary conditions for flow around a sphere are
diffuse reflection at the sphere surface and vanishing h
far from the sphere.

Lea and Loyalka (1982) solved the above problem
numerically for the number density and velocity perturba-
tions around the sphere assuming isothermal conditions
(e3 D 0). Their solution procedure involved solving for the
perturbations using a Gaussian quadrature out to a radius
of a � C 10, or about 8.9 mean free paths from the surface,
then matching the numerical solution at a � C 10 to a trial
function based on the continuum (Stokes flow) solution.
They adjusted the numerical coefficients of the trial
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function until the inner and outer solutions converged. Law
and Loyalka (1986) applied this approach for non-isother-
mal conditions.

We follow the general approach of Loyalka and col-
leagues, but using the asymptotic solution to the BGK
equation for large r (Takata et al. 1993) as the trial func-
tion for r � > a � C 10. Like in continuum flow, the
velocity in the transition regime can be written as separa-
ble radial and angular components

e2r D
ffiffiffi
2

p
U�1 q2 rð Þcosu

e2u D ¡ ffiffiffi
2

p
U�1 q3 rð Þsinu ; ½27�

where q2 and q3 are functions describing the radial depen-
dence of the r- and u-components of the velocity perturba-
tion obtained by solving the BGK equation. These
functions depend on the primary sphere radius, so that the
solution procedure applies to a specific Knudsen number.
We can also obtain the friction coefficient from the solu-
tion of the BGK equation. In general, our velocity results
compare well with the velocities reported by Takata et al.
(1993) based on their solution of the linearized Boltzmann
equation, and our drag results compare well with Milli-
kan’s data (Millikan 1923). Note, however, that our calcu-
lated friction coefficients for the near continuum regime
(Kn < 0.1) are less accurate, likely due to numerical error
that is more prominent for lower Knudsen numbers.3 We
will discuss this point further in Section 3.2.

2.3. Application of BGK results to Kirkwood–
Riseman theory

We now apply Kirkwood–Riseman theory to particles in
the transition regime by explicitly writing the friction
coefficient and velocity tensor in Equation (18) as func-
tions of the primary sphere Knudsen number

!
Fi D z0 Knð Þ !

Ui ¡
XN
i 6¼j

V
$

ij Knð Þ�!Fj; ½18�

where the velocity perturbation tensor is

V
$

ij Knð ÞD ¡ q2 rij;Kn
� �
ffiffiffi
2

p
!
rij

!
rij
r2ij

¡ q3 rij;Kn
� �
ffiffiffi
2

p I
$¡

!
rij

!
rij
r2ij

" #
: ½28�

For primary spheres separated by distances
r�ij < a � C 10, q2 and q3 are tables of data; for spheres

separated by greater distances, q2 and q3 are the asymp-
totic solutions to the BGK equation for large r with coef-
ficients chosen to match the inner solution for that
Knudsen number.

Equation (18) gives the force on each primary
sphere for a given flow velocity. (Dividing Equa-
tion (18) by the friction coefficient z0 gives the velocity
at each primary sphere.) The total force on the particle
is the vector sum of the force on each primary sphere.
We obtain the friction tensor X

$
by solving Equa-

tion (18) for the velocity in three mutually orthogonal
directions. The force on the particle for arbitrary fluid
velocity is then

!
Fd DX

$� !
U : ½29�

In the slow rotation limit, the scalar friction factor is
the harmonic mean of the three eigenvalues of the fric-
tion tensor (Happel and Brenner 1965). In the fast rota-
tion limit, the scalar friction factor is the arithmetic
mean of the eigenvalues (Li et al. 2014).

3. Results and discussion

We have calculated the scalar friction coefficient for a
large range of primary sphere sizes and number of pri-
mary spheres. All calculations involve particles with
df D 1.78 and k0 D 1.3, which are representative of
aggregates formed by DLCA. The particles have been
generated with an algorithm that imitates cluster–clus-
ter aggregation. Due to limitations with our fractal
generator, aggregate size is capped at 2000 primary
spheres. In this article, we are reporting the friction
coefficient for the slow rotation limit, meaning we are
taking the harmonic average of the friction tensor
eigenvalues.

3.1. Comparison to experimental data and power-
law models

Figure 1 compares the results of our friction coeffi-
cient calculations for a primary sphere Knudsen num-
ber of 7 to tandem differential mobility analyzer
(TDMA) and combined DMA and aerosol particle
mass analyzer (DMA-APM) results (Shin et al. 2009,
2010). The primary sphere size for the TDMA 80–
300 nm and DMA-APM curves was experimentally
determined to be 19.5 nm with a standard deviation
of 6.1 nm, while the primary sphere size is assumed
to be 19.5 nm for the TDMA 30–100 nm curve (Shin
et al. 2010). Our self-consistent field results compare
very well to the experimental data. Furthermore, the

3This is because the friction coefficient obtained from our solution of the BGK
equation is non-dimensionalized by the free molecule friction coefficient
(Epstein’s equation). As a result, the friction coefficient decays to zero for
decreasing Knudsen number, meaning numerical errors are more promi-
nent for the near-continuum regime.
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self-consistent results support the observation of Shin
et al. (2009) that deviations from a power-law rela-
tionship at high N may be due to hydrodynamic
interactions among the primary spheres in the
aggregate.

Next, we compare our friction coefficient results to
the results from three models for DLCA particle drag in
the transition regime.

Lall and Friedlander’s (2006) model,

zLF D c � Nma
Kn

½30�

is based on Chan and Dahneke’s (1981) calculations for
the drag on straight chain aggregates in the free molecu-
lar regime. Here, c� D 9.17 is a dimensionless drag force
that assumes 93% diffuse reflection and 7% specular
reflection. Chan and Dahneke (1981) argued that Equa-
tion (30) should be valid for aggregates with N > 12 that
have occasional kinks and branches. Implicit in Lall and
Friedlander’s model is that the aggregate behaves as if it
is in the free molecule regime as long as the primary
spheres are in the free molecule regime. Eggersdorfer
et al.’s (2012) model relates the mobility radius—or the
radius of a sphere that has the same drag as the parti-
cle—to the number of particles through the relationship

rm;E D a
N
ka

� �1 6 2Da

; ½31�

where kaD 1:1 and DaD 1:08 are based on DLCA simu-
lations. The friction coefficient is obtained by

substituting the mobility radius into Stokes’ law

zm;E D 6pmrm;E

Cc λ 6 rm;E
� � : ½32�

Finally, Rogak et al. (1993) noted that the mobility
radius is approximately equal to the orientation-averaged
projected area radius for particles with mobility radii less
than 200 nm. Thus, we compare our results to the fric-
tion coefficient calculated using the particle projected
area:

zm;R D 6pm
ffiffiffiffiffiffiffiffiffiffiffiffi
PA 6 pp

Cc λ 6 ffiffiffiffiffiffiffiffiffiffiffiffi
PA 6 ppð Þ ½33�

We also compare our results to friction coefficients
calculated using the adjusted sphere method, Equa-
tion (9). We computed the particle hydrodynamic radius
using the Zeno code (Mansfield et al. 2001), which uses
the Hubbard–Douglas approximation, and we computed
the projected area using our own algorithm.

Figure 2 shows the comparison between our results
and the aforementioned models for primary sphere
Knudsen numbers of 100, 10, 1, and 0.1, corresponding
to sphere radii of 0.68 nm, 6.8 nm, 68 nm, and 680 nm,
respectively. We also include free molecule results
obtained with our own free molecule code and contin-
uum results obtained with Zeno on select figures. All of
the models give results for Kn D 100 for all N that are
very similar to the free molecular limit, which is not sur-
prising given the very small primary sphere size. How-
ever, for large N all of the models—with the exception of
the Lall and Friedlander model—begin to diverge from
the free molecular limit for Kn D 10 primaries, suggest-
ing that hydrodynamic interactions among the primaries
are important even at this primary Knudsen number.
Interestingly, our results and the ASM results approach
the Zeno continuum results as N increases for Kn D 1.
Finally, our Kn D 0.1 results compare favorably to the
continuum results and to the ASM.

Figure 3 shows the ratio between the predictions of
the aforementioned models and our friction coefficient
results for N D 2000. Values of unity represent perfect
agreement between our results and other models. Once
again, we see very good agreement with the adjusted
sphere method across the entire Knudsen range. The
Eggersdorfer and Rogak friction coefficients are notably
lower than our results at low to moderate primary sphere
Knudsen numbers, though it is important to reiterate
that this comparison is for large aggregates (N D 2000).
The agreement between the models is better for smaller

Figure 1. Friction factor results for fractal aggregates with pri-
mary sphere diameter 19.5 nm in ambient air (Kn D 7). TDMA
and DMA-APM results (Shin et al. 2009, 2010) are shown for
comparison.
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aggregates at lower primary sphere Knudsen numbers, as
indicated in Figure 2.

Additionally, Figure 3 illustrates how the aggregate
approaches the continuum limit for decreasing Knudsen
number: the ratio of the continuum result calculated
using the Zeno code to our Kirkwood–Riseman results is
near unity for a primary sphere Knudsen number as
high as 2. This figure explicitly shows the difference
between using the monomer friction coefficient from the
BGK model solution and using the monomer friction
coefficient from the Cunningham slip correction factor.
Differences are largest for small Knudsen numbers,
though results are in good agreement with the contin-
uum results at low Knudsen number whether we use the
BGK friction coefficient or the Cunningham slip coeffi-
cient for z0 in Equation (18).

Figure 4 clearly illustrates how the friction coefficient
diverges from the free molecular limit and exhibits more
continuum-like behavior as the particle size (both in
terms of N and a) increases. Here, calculated friction
coefficients are normalized to the monomer friction coef-
ficient for several primary sphere Knudsen numbers in
the transition regime. The power-law exponent (i.e., h
from Equation (8)) decreases from a value of approxi-
mately 0.9—corresponding to the free molecule
regime—as both the number of primary spheres and the
primary sphere size increases, until it reaches a limit of
approximately 0.54 for the continuum regime. The free

molecule and continuum values are in agreement with
previous observations (Sorensen 2011). The change in
the power-law exponent reinforces the importance of
accounting for hydrodynamic interactions among pri-
mary spheres, even for fairly open aggregates with pri-
mary spheres in the near-free molecular regime.

Previously researchers have looked at the evolution of the
ratio between the mobility radius and the radius of gyration
as the number of primary spheres increases. Figure 5 com-
pares our self-consistent field results for this ratio
(bDRm 6 Rg) to the same calculation in the continuum
(where the mobility radius and the hydrodynamic radius
are equivalent) and free molecule regimes. Our results agree
with previous observations (Meakin et al. 1985; Meakin
and Deutch 1987; Lattuada et al. 2003) that b approaches
an asymptotic value in the continuum regime. Our results
also agree qualitatively with the general observations of Sor-
ensen (2011), specifically Figure 2 of that work. However,
our asymptotic results for Kn D 0.01 and Kn D 0.1 are
approximately 0.85, which is significantly different (i.e.,
outside of numerical uncertainty) from the value of 0.75
recommended by Sorensen for the continuum regime.
(Note that the Zeno results for the hydrodynamic radius
suggest an asymptotic value of bD 0:8 for largeN.) Figure 5
also notably shows that the Kn D 1, Kn D 3, and Kn D 10
curves also reach asymptotic limits, again suggesting that
aggregates approach the continuum regime behavior as the
number of primary spheres increases, even when the

Figure 2. Comparison of self-consistent field results to other models for the scalar friction factor for (a) Kn D 100, (b) Kn D 10, (c) Kn D
1, and (d) Kn D 0.1. Results are for particles in ambient air. Where appropriate, free molecular results from a ballistic algorithm and con-
tinuum results from the Zeno code are displayed for reference.
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primary spheres are in the near-free molecule or transition
regime.

3.2. Uncertainty in the calculated friction
coefficients

We have demonstrated in this article and in our earlier
paper (Corson et al. 2017) that the friction coefficient for
DLCA aggregates computed using our extended Kirkwood–
Riseman method is in good agreement with experimental
data, the continuum and free molecule limits, the adjusted
sphere method (Dahneke 1973; Zhang et al. 2012), and
direct simulation Monte Carlo results (Zhang et al. 2012).
But the question becomes, how accurate is our extended
Kirkwood–Riseman method? To answer this question, we
provide a very rough estimate of the error in our results.

There are two primary sources of error in our calcula-
tions: the BGK results for the velocity around and drag
on a sphere in the transition flow regime, and the Kirk-
wood–Riseman method itself. There is ample discussion
in the literature about the accuracy of the Kirkwood–
Riseman method for continuum flow; see de la Torre
and Rodes (1983), Hubbard and Douglas (1993), Soren-
sen 2011, and Swanson et al. (1980) for a small sample.
We refer the reader to the literature for a thorough dis-
cussion. We simply note that in our experience, the Kirk-
wood–Riseman results (using either the Stokes flow
velocity perturbation or the Rotne–Prager tensor) is
within 3% of the Zeno results for DLCA aggregates with
10–2000 primary spheres. For N D 10, the Kirkwood–
Riseman method underpredicts the friction factor by less
than 3%. At N D 2000, the Kirkwood–Riseman result is
approximately 2% greater than the Zeno result. Thus, we
estimate the error in our calculated transition regime
friction coefficients due to the Kirkwood–Riseman
method itself is on the order of a few percent.

Figure 3. Ratio of friction coefficients from other models to our
results for N D 2000. Free molecule and continuum results are
calculated using our own Monte Carlo algorithm and the Zeno
algorithm, respectively. For the upper plot, our friction coefficient
results are obtained using the calculated drag from the BGK
model. For the lower plot, our friction coefficient results use the
Cunningham slip formula for the monomer friction coefficient (z0
in Equation (18)). Free molecule results for Kn < 15, LF results for
Kn < 35, and continuum results for Kn > 15 are more than twice
our self-consistent field results and thus do not appear in the
plots above.

Figure 4. Normalized friction coefficient results for a range of
aggregate sizes.

Figure 5. Relationship between the mobility radius and the
radius of gyration for several Knudsen numbers.
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The second source of error is related to the solution of
the BGK equation. From this solution, we obtain the
velocity around a sphere and the ratio of the drag on the
sphere to the free molecule drag. We can easily estimate
the error in the drag on a sphere by comparing our
results from the BGK equation to the drag from Stokes’
law with the Cunningham slip correction factor. If we
apply Davies’ coefficients in the slip correction formula,
then the calculated error in the BGK drag results is less
than 3% for Kn > 0.2. The error is greater at lower
Knudsen numbers, as we have noted in Section 2.2; for
Kn D 0.01, the BGK drag is approximately 7% greater
than the drag from Stokes’ law. For most of the Knudsen
range, the error in our calculated drag force is compara-
ble to the error in Stokes’ law for the slip regime (either
due to the model parameters used in the slip correction
factor or to experimental uncertainties); the BGK results
are only in significant error near the continuum regime.

We can compare our velocity results to the linearized
Boltzmann equation results of Takata et al. (1993). The
linearized Boltzmann model is more rigorous than the
BGK model, but its associated computational cost is
much higher than that required to solve the BGK model.
Takata et al. present the velocities as a function of the
parameter k1 D ffiffiffi

p
p

Kn 6 2. Our velocity results are gen-
erally within 1%–2% of the linearized Boltzmann results
for Kn D 0.11, 1.1, and 11 (k1 D 0.1, 1, and 10). From
these comparisons of our BGK velocity and drag results
to the linearized Boltzmann results and to Stokes’ law,
we estimate that the error in our aggregate friction coeffi-
cient results due to the use of the BGK model is less than
5% for Kn > 0.2 and up to 10% for 0.01 < Kn < 0.2.

Combining the two sources of error, we would esti-
mate the overall error in our results to be less than 10%
for most of the Knudsen range. This estimate is sup-
ported by comparing our friction coefficient results to
the ASM results for N D 2000 (Figure 3): the difference
is less than 10% for 0.01 < Kn < 100. Also, our calcu-
lated friction coefficient results for a primary sphere
Knudsen number greater than 5 are within 10% of the
direct simulation Monte Carlo results of Zhang et al.
(2012) for a 20-particle aggregate with a fractal dimen-
sion of 1.78 and a prefactor of 1.3 (Corson et al. 2017).

3.3. Analytical expression for friction coefficients of
aggregates

While the Kirkwood–Riseman method is capable of pro-
viding the friction coefficient of an aggregate quickly—
within seconds for N » 100 and within minutes for N »
1000—it is still not fast enough for use in an aerosol
dynamics code. Thus, it would be beneficial to use our
friction coefficient results to develop a simple model that

provides the friction coefficient given only the number of
primary spheres, the primary sphere size, and the gas
properties.

Sorensen and Wang (2000) proposed computing the
friction coefficient in the transition regime as the har-
monic sum of the continuum and free molecule
expressions,

z¡ 1D z¡ 1
c C z¡ 1

FM : ½34�

For a sphere, the continuum and free molecule fric-
tion coefficients are given by Stokes’ law (Equation (5))
and Epstein’s equation (Equation (6)), respectively. We
adopt this approach for our model of the friction coeffi-
cient of DLCA aggregates with fractal dimension and
prefactor of 1.78 and 1.3.

We start by writing the continuum and free molecule
aggregate friction coefficients as power laws

zm; agg D zm½ANh C 1¡Að Þ�; ½35�

where zm is the continuum (m D c) or free molecule
(m D FM) monomer friction coefficient from
Equation (5) or Equation (6), and A and h are model
parameters obtained from fits to the continuum (Zeno)
or free molecule (Monte Carlo) results for N D 1 to
2000. We include the 1¡A term in the power-law fits to
give the correct friction coefficient for a monomer. The
free molecule coefficients AFM D 0:843 and hFM D 0:939
are in excellent agreement with Mackowski’s correlation
for the free molecule friction coefficient (AFM D 0:847
and hFM D 0:94 for k0D 1:3 and df D 1:78; Mackowski
2006). The continuum coefficients Ac D 0:852 and hc D
0:535 from our Zeno results are also in good agreement
with previous studies, as reported in Sorensen’s review
article (Sorensen 2011).

Taking the harmonic sum of the continuum and free
molecule power-law fits, we obtain the following expres-
sion for the aggregate friction coefficient as a function of
the number of primary spheres, the primary sphere
radius, and the gas properties:

z

6pma
D ½AcN

hc C 1¡Acð Þ�¡ 1CBKn�½AFMN
hFM

�
C 1¡AFMð Þ�¡ 1g¡ 1: ½36�

Here, B D 1.612 for a hard-sphere gas with a momen-
tum accommodation coefficient of unity (i.e., pure dif-
fuse reflection), consistent with our assumptions
throughout this article. For a monomer in the transition
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regime, the above relation reduces to

z0 D 6pma
1CBKn

: ½37�

Sorensen and Wang (2000) point out that the mono-
mer friction coefficient given by the harmonic sum is up
to 10% less than the friction coefficient given by Stokes’
law with the slip correction factor. Thus, we apply a cor-
rection factor to our model to give the same monomer
drag as Stokes’ law. The final result is Equation (38),
which provides an easily deployed analytic result to com-
pute the friction coefficient over a wide range of aggre-
gate and primary particle sizes

z

6pma
D 1C 1:612Kn

Cc.Kn/
½0:852N0:535 C 0:148�¡ 1�

C 1:612Kn½0:843N0:939 C 0:157�¡ 1g¡ 1 ½38�

Figure 6 plots the friction coefficient calculated from
Equation (38) as a function of primary sphere Knudsen
number and the number of primary spheres. Results are
normalized using Stokes’ law evaluated for a D λ/Kn.
The figure shows a clear transition between continuum
behavior, where the friction coefficient is proportional to
1/a for a given number of primary spheres, and free mol-
ecule behavior characterized by a 1/a2 dependence. (The
normalized coefficients have no dependence on a in
the continuum and a 1/a dependence in the free mole-
cule regime.) This figure shows that the transition from
the continuum regime to the free molecule regime occurs
at larger Knudsen numbers as the number of primary
spheres increases, demonstrating once again that par-
ticles exhibit more continuum-like behavior as both the

Knudsen number and the number of primary spheres
increase.

Figure 7 shows the error in our fit relative to our self-
consistent field results,

errorD zfit¡ zKR
zKR

½39�

with zfit given by Equation (38). The figure presents the
error for a range of aggregate sizes and primary sphere
Knudsen numbers. Overall, Equation (38) provides a
good fit to our self-consistent field results for all values
of N and Kn that we have evaluated. Note that we com-
pare our fit to our self-consistent field results using the
semi-empirical slip correction for the monomer drag
coefficient, instead of the drag coefficient we obtain by
solving the BGK model. As we have stated, this distinc-
tion is only significant for monomers near the contin-
uum limit.

4. Conclusions

We have presented our self-consistent field results for
the translational scalar friction coefficient of DLCA
aggregates of 10 to 2000 primary spheres with pri-
mary sphere Knudsen numbers between 0.01 and
100. Our results compare well to the experimental
data of Shin et al. (Shin et al. 2009, 2010) and to the
friction coefficient from the adjusted sphere method
(Dahneke 1973; Zhang et al. 2012). We estimate that
our results are within approximately 10% of the true
friction coefficient for DLCA aggregates up to 2000
primary spheres for 0.01 < Kn < 100, though we

Figure 6. Normalized friction coefficient as a function of the pri-
mary sphere Knudsen number and the number of primary
spheres, N, calculated using Equation (38). Friction coefficients
are normalized by Stokes’ law evaluated at the specified Knudsen
number.

Figure 7. Error of our harmonic sum model for the friction coeffi-
cient, Equation (38), relative to our Kirkwood–Riseman friction
coefficient results for a range of Knudsen numbers. Error is calcu-
lated with Equation (39); the Kirkwood–Riseman results in this
equation use the monomer friction coefficient from Stokes’ law
instead of the friction coefficient computed from the BGK model.
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would need to compare our results to experimental
data over a wide range of primary sphere Knudsen
numbers and aggregate sizes to verify this estimate.
These results have been obtained by taking the har-
monic mean of the eigenvalues of the translational
friction tensor. The difference between the harmonic
and arithmetic averages of the eigenvalues is generally
less than 1%, which is consistent with previous calcu-
lations for low-aspect-ratio particles in the free mole-
cule regime (Li et al. 2014). This difference is minor
compared to the estimated uncertainty in our results.

One significant finding of this study is that aggregate
drag becomes more continuum-like as the number of
primary spheres increases, even for primary sphere
Knudsen numbers near the free molecule regime. Thus,
one should not use free molecule techniques to compute
the drag on an aggregate unless the aggregate size is very
small with respect to the gas mean free path. This finding
supports the theory behind the adjusted sphere method
that one can calculate the drag on an aggregate using an
aggregate Knudsen number instead of the primary
sphere Knudsen number.

Our method is fast, but not fast enough to imple-
ment in an aerosol dynamics code. The same is true of
the adjusted sphere method, unless one already knows
the hydrodynamic radius and projected area of an
aggregate. For this reason, we have compared our
results to the harmonic sum of power laws for the fric-
tion coefficient in the continuum and free molecule
regimes. The result presented in Equation (38) provides
an analytical expression for the drag over a range of
aggregate and primary particle size. The simple model
is within 8% of our self-consistent field results for the
entire range of aggregate sizes and primary sphere
Knudsen numbers that we have studied. This analysis is
for fractal clusters generated using a cluster–cluster
aggregation method for a fractal dimension of 1.78 and
a prefactor of 1.3.
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