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We present the full solution of the master equation for the system with reversible isomerization and 
decomposition channels at low pressures. As an example of such a system we consider the cis-trans 
isomerization of 2-butene. At high temperatures cis-Zbutene decomposes into butadiene and hydrogen. The 
effect of isomerization on the decomposition rate coefficient was studied and indicated multiple steady-state 
behavior. At 1200 K, for example, a true steady state is achieved only after 75% of the product has been 
formed. This behavior is explained in terms of relaxation to the equilibrium distribution between cis and 
trans isomers. The first plateau in the rate coefficient corresponds to the irreversible regime of isomerization 
when two isomers are far from equilibrium, while the second plateau or true steady state is established after 
equilibrium between isomers has been reached. The effect is not observed at either low temperatures or high 
pressures. 

I. Introduction 

Many chemical processes, particularly those involving large 
polyatomic compounds, include both reversible isomerizations 
and decompositions. Some of these are of great practical 
importance, for example, the decomposition and isomerization 
pathways of large organic radicals in combustion environments. 
In this paper we treat a particularly simple case, 

B - A 4 C  

where A is a reactant, which can either isomerize reversibly to 
B or decompose to a product C (Figure 1). At present, only 
studies on separate parts of the reaction are known from the 
literature: the irreversible reaction A - C is well described by 
the theory of unimolecular rea~tionsl-~ and reversible isomer- 
ization reactions A == B have been studied recently by the 
master equation a n a l y ~ i s . ~ - ~  However, the full scheme has not 
been investigated in a self-consistent manner. It is unclear how 
strong the effect of isomerization is and under what conditions 
we can neglect the isomerization and apply a simple irreversible 
scheme for the formation rate of C. 

The purpose of this work is to present a detailed study on 
the basis of solution to the time-dependent master equation for 
the system involving isomerization and decomposition. As a 
reference system we consider cis-trans isomerization of 
2-butene. This system has been well investigated experi- 
mentally.'-'O The rate coefficient for the isomerization was 
measured over a wide range of pressures and temperatures. It 
was that at temperatures higher than 1250 K, formation 
of butadiene starts to interfere with the isomerization. When 
interpreting the high-temperature and low-pressure experimental 
data, it was suggestedI0 that isomerization is much faster than 
decomposition, such that cis- and trans-2-butene are in equi- 
librium. Here, we will present master equation analysis for the 
system under the same conditions to examine this assumption. 

In section 11, we describe the master equation and the 
computational method we used to solve the eigenvalue problem 
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B A C 
Figure 1. Schematic energy diagram for a system with isomerization 
and decomposition channels described by eqs 1. 

for the relaxation matrix. In section III, results of calculations 
for the isomerization of cis-2-butene at low temperatures are 
presented and compared with the Rabinovitch and Miche18 
measurements. High-temperature calculations are discussed in 
section IV, where we give a new interpretation of the experi- 
mentI0 on very low-pressure pyrolysis of cis-2-butene. 

11. The Master Equation 

The time evolution of the system may be described by a 
master eq~at ion .~  In the discrete formulation, the master 
equation for the system with reversible isomerization and 
decomposition may be written as 

where ei is the population of the ith energy level, ki is the 
microscopic (energy dependent) rate coefficient, Pu are collision 
energy transfer probabilities, and w is the collision frequency. 
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Superscripts A, B, and d denote the two isomers and the 
decomposition channel, respectively. Index 1 for isomer B 
corresponds to the same energy as i for A, Ei = El. The first 
term on the right side of each of the equations stands for gain 
by collisional energy transfer from all other levels E, (in eq la) 
with rate coefficient UP,. The second stands for loss by 
collisional energy transfer to all other levels and we used in 
this expression the normalization condition for collision energy 
transfer probabilities 

j 

Other terms are loss and gain by different reaction channels 
with corresponding rate coefficients. 

In real calculations, infinite sums over energy levels in eqs 1 
are replaced by finite sums with a cutoff energy high enough 
to ensure the population of the highest levels to be negligibly 
small. Taking the cutoff energy as large as 2E0, where EO is 
the threshold energy, provided sufficient computational ac- 
curacy. The energy grain size was chosen such that there were 
-150 grains for each isomer. 

The collision energy transfer probabilities were taken in the 
standard form of an “exponential down” model 

(3) P, = A, exp(-(E, - Ei) /a) ,  j L i 

where a is a positive parameter governing the magnitude of 
the energy transfer, with corresponding upward probabilities 
obtained from detailed balance 

where fi is the equilibrium distribution function 

fi = -Ni 1 exp( - 6) 
Q 

(4) 

(5) 

where kB is the Boltzmann constant, Q is the partition function, 
and Ni is the density of states. Normalization constants A, are 
found from the normalization condition eq 2 by using a recursive 
algorithm described by Gilbert and Smith.3 

The microscopic rate coefficients k(E) were calculated by 
using RRKM theory, which leads to 

G*(E) k(E) = I‘ 
hN(E + E,,) 

where @(E)  is the total number of states of the transition 
structure, up to and including E, N(E) is the density of states of 
the reactant, and I f  is the reaction path degeneracy. G*(E) and 
N(E) were calculated from the set of vibrational frequencies 
using the fast algorithm for direct count of Beyer and Swine- 

The coefficient for the reverse reaction is obtained by detailed 
balance 

It is convenient to consider the master equation (eq 1) in 
matrix form. We introduce a vector g, whose first M elements 
are e; and elements from M + 1 to 2M - h are e;, h = AH/ 
6E accounts for a difference in zero-point levels for two isomers. 
Then we can rewrite eq 1 in the form 

d@dt = Jp (8) 

where J is the relaxation matrix constructed from the energy 
transfer probabilities and the microscopic rate coefficients. The 
formal solution of eq 8 is 

where g(0) is the initial population vector. The solution can 
be expressed in terms of eigenvectors and eigenvalues of J. 
However, because most methods of diagonalization are devel- 
oped for symmetric (Hermitian) matrices,I2 it is useful first to 
transform J to a symmetric matrix 

where F is a diagonal matrix with the elements3 

F..=- 1 i = l , 2  ,..., 2 M - h  

I’ A’‘*’ 
Equation 9 now becomes 

p( t )  = F-‘eBrFp(0) (12) 

B = U-’AU (13) 

Matrix B can be expressed in the form 

where A is the diagonalized form of eigenvalues, U is a matrix, 
which consists of the components of the eigenvectors of B 

u,, U = (S.). I I (144  

(u-’), = (sj)i (14b) 

where (SJj stands for thejth component of the ith eigenvector. 
Now we can rewrite eq 9 as 

p( t )  = F-’U-‘ e *‘ UFe(0) (15) 

and substituting expressions 11 and 14 for F and U we obtain 

Note that indexes i and j run here from 1 to 2M - h. 
In our computations we symmetrize J as described above; 

then we apply Householder’s algorithmI2 for tridiagonalization 
and after that the implicit QR algorithm’* for final diagonal- 
ization. This procedure provides a fast and stable method to 
find a complete set of eigenvectors and eigenvalues of J. 

Once eigenvalues Ai and eigenvectors Si are found, one can 
calculate the population function g for each isomer as a function 
of time (eq 16) and the time-dependent forward and reverse 
reaction rate coefficients for the isomerization 

and decomposition rate coefficient 

It should be noted that rate coefficient kd is directly measured 
in experiments, while kf and k, are usually calculated through 
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other measured parameters. For example, in the case of 
equilibrating isomerization without exit channel, k?’ and kj“’ 
are calculated through relaxation coefficient krel and equilibrium 
constant cq 

Bedanov et al. 

where krel is the rate coefficient describing the approach to 
equilibrium (but not the rate of isomerization!), which is defined 
through the slope of time dependence of the displacement from 
the equilibrium concentration of one of the isomers. The 
relationship between kf and k, extracted from the experimental 
data and those defined by eqs 17 has been discussed in the 
l i t e r a t~ re~-~  and shown not to be equivalent. Therefore, in order 
to compare our calculations with experimental data on equili- 
brating isomerization we need to compute krel. Following 
Quack4 we define a phenomenological relaxation coefficient krel 
as 

1 d  
M ( t )  dt 

k,,,(t) = - ~ -AA(t) 

where AA(t) = A(t) - A(=) is the displacement from the 
equilibrium concentration for isomer A. In practical calculations 
krel may be determined via the equation5 

At very low pressures, the collision frequency between gas 
molecules becomes comparable to the wall collision frequencies, 
such that wall collisions contribute to the energy transfer rate. 
The easiest way to account for a wall effect is to make a 
correction to the collision frequency w.  The molecule- 
molecule collision frequency is 

where [MI is the concentration of bath gas, p is the reduced 
mass, and d is the collision diameter. The wall collision 
frequency is 

where m is the molecule mass and S and V are the surface and 
the volume of the vessel. We can replace the collision frequency 
in eqs 1 with w = w, + ow, which is a linear function of 
pressure and finite a t  [MI = 0. Since the collision energy 
transfer probabilities may be different for the two types of 
collisions, it is reasonable to define a in eq 3 to have the form 

where a, and a, correspond to molecule and wall collisions, 
respectively. 

111. Equilibrating Isomerization (No Decomposition) 
We consider cis-2-butene as an example of a real system to 

which we can apply our computational scheme. Isomerization 

lo-‘ t 

10-8 1 I’ 
10-D I I I I 6 
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Time is)  
Figure 2. Relaxation rate coefficient as a function of time. Non- 
steady-state master equation analysis of equilibrating cis-trans isomer- 
ization of 2-butene at T = 742 K. Each calculation is made for two 
different initial distributions for cis isomer: TO = 300 (1) and 600 (2) 
K. 

of cis-2-butene to trans-2-butene is well investigated experi- 
mentally.8-’0 At temperatures below 1250 K it is practically a 
pure isomerization with a negligible amount of side products 
f o r m a t i ~ n , ~ , ~  while at higher temperatures, the relative impor- 
tance of side products sharply  increase^.^-'^ The main channel 
for side reactions is decomposition of cis-2-butene to butadiene 
and hydrogen. l o  

In this section we consider low-temperature isomerization of 
cis-2-butene at T = 742.2 K, where equilibrating isomerization 
was studied by Rabinivitch and Michela in a wide range of 
pressures. In our calculations we used the following parameters 
from refs 14 and 15: = 2, d = 5.0 A, A H 0  = -350 cm-I, EI 
= 21 900 cm-I, where A H 0  is the heat of reaction at 0 K and 
El the activation energy for the forward reaction at 0 K (Figure 
1). In our notation now A = cis and B = trans. The vibrational 
frequencies for cis and trans-2-butene were taken as reported 
by Richards and Nie1~en.I~ The vibrational frequencies for the 
activated complex were used as assigned by Lin and LaidlerI4 
which were obtained by fitting to the high-pressure results of 
Rabinovitch and Michela and Lifshitz, Bauer, and R e ~ l e r . ~  
Initial population was set to zero for trans isomer and an 
equilibrium distribution for vibrational-rotational states of the 
cis isomer corresponding to temperature TO. 

Figure 2 shows the time evolution of the relaxation rate 
coefficient for cis-trans isomerization of 2-butene at T = 742 
K at low and high pressures. Each calculation was done for 
two different initial populations corresponding to TO = 300 K 
and TO = 600 K. The results show that the final steady-state 
rate constant does not depend on initial population, and the 
induction time required to achieve a steady state decreases with 
increasing pressure. 

A comparison of calculated steady-state rate coefficients with 
the experimental data of Rabinovitch and Michela is shown in 
Figure 3. The calculations were made for both the finite system 
(solid line) corresponding to the reactor size of 4250 cm3 (big 
bulb used by Rabinovitch and Miche18 at low pressures) and 
for the infinite system (dashed line) using the following 
parameters for collision energy transfer probabilities: a, = 300 
cm-’ and a, = 800 cm-’. When calculating the correction 
for the wall collisions we assumed a cylindrical reactor with 
the length to diameter ratio of 2. Our results reproduce 
measured rate coefficients very well. Note that at low pressures, 
there is significant deviation from the standard falloff curve 
(dashed line) resulting from wall collisions, because, at these 
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Figure 3. Falloff curves for cis-trans isomerization of 2-butene at T 
= 742 K: experiment of Rabinovitch and Miche18 (circles), master 
equation for the infinite system (dashed line), master equation for the 
4250 cm3 reactor used in the experiment* (solid line). Dotted lines 
are same calculations but with ag = 600 (upper curves) and 150 cm-I 
(lower curve). 
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Figure 4. Time evolution of constant Kc and rate coefficients kf, k,, 
and kr+ Equilibrium between A (cis) and B (trans) isomers is achieved 
at -lo6 s, which corresponds to the second plateau for kf. The first 
plateau of kf corresponds to the irreversible regime of isomerization. 

pressures, both of the collision frequencies are comparable: wg 
= 23 000 s-l and ww = 19 000 s-' at p = 4 x 

Figure 4 shows time dependencies of krel, kf ,  kr, and 
nonequilibrium Kc = BIA up to lo7 s at T = 742 K and p = 4 
x E a .  At t > lo6 s, the system has established 
equilibrium, as all quantities shown in Figure 4 have achieved 
their t = w values. However, the process of equilibration itself 
is in steady state (krel is constant at t > s). For comparison 
purposes the duration of a typical run in Rabinovitch-Michel 
experiments is hundreds of seconds, which corresponds to 
steady-state relaxation, more exactly, to the early stages of it, 
where the isomers are still far from equilibrium (Figure 4). 

An interesting feature seen in Figure 4 is that the forward 
rate coefficient kf is time independent in the interval lo-* s < 
t < lo4 s and then grows gradually and reaches its true steady- 
state value ky at -lo6 s. During the initial stages of the 
steady-state equilibration process, the trans isomer is poorly 
populated, and the isomerization behaves essentially irreversibly, 
which can be expressed in terms of four-state model: 

Wa. 

A* - 0 *  

I t  i 
A B 

Note, however, this is not a purely irreversible process like in 
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Figure 5. Normalized population of energy levels of isomer A (cis) 
(a) and B (trans) (b) during irreversible isomerization (1, 2, 3) and at 
very late stages of equilibrating process (4). Time in seconds: 
(l), 10 (2), 104 (3), and lo6 (4). Dotted line corresponds to the threshold 
for isomerization. 

the case of unimolecular decomposition. In this three-step 
reaction, only one step, which is collisional deactivation of 
isomer B, is irreversible, while the other two, collisional 
activation and deactivation of isomer A and conversion between 
energized species, are reversible. This class of irreversible 
processes has been studied by Green et al.? who identified the 
phenomenological rate coefficients eqs 19a and 19b with the 
steady-state net flux of reaction in forward and reverse direc- 
tions, respectively. In our case, the net flux of reaction is 

So, comparing kr' and e!+, we can test whether the system is 
in a steady-state irreversible regime or not. Our calculations 
yield nearly equivalent values: kr' = 4.544 x lop6 s-l, and 
kY& = 4.537 x s-l, which confirms that the first steady 
state corresponds to the irreversible isomerization. The popula- 
tion distribution function for isomer A during this period is 
typical of population functions for irreversible reactions with 
depleted levels above threshold (Figure 5a) and does not change 
in shape. 

Note that the irreversible regime described above is a 
consequence of initial distribution between the isomers, which 
is essentially nonequilibrium: isomer B is zero populated and 
remains very low populated (less than 1%) during this period, 
while the equilibrium population of B should be -50% 
(gq = P). 

There is another regime of the reaction at t =- lo4 s, which is 
characterized by a gradual increase of kf up to its equilibrium 
value (Figure 4). With increasing time, the population of B 
below threshold gradually grows (Figure 5b) and activation from 
those levels becomes significant. This reverse flux from low 
levels of B (i.e. B - B') makes the distribution function of A 
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Figure 6. Multiple steady-state behavior of the rate coefficient for 
the formation of butadiene. The percentage of decomposition of cis- 
2-butene is indicated. T = 1200 K. This behavior is independent of 
the initial population of the cis isomer: TO = 300 (1) and 600 ( 2 )  K. 

closer to an equilibrium population (curve 4 in Figure 51, and 
finally, achieve equilibrium at the second plateau at t > lo6 s 
in Figure 4. The net flux of reaction k::, and kj" are no 
longer equivalent, because reaction net flux gradually approaches 
zero during this period, while kr' is constant. Thus, the 
second regime of isomerization is essentially reversible. 

IV. Isomerization and Decomposition 

At high temperatures, isomerization of cis-2-butene is ac- 
companied by side reactions, the most important of which is 
decomposition of cis-2-butene to butadiene and hydrogen. The 
barrier height for the decomposition channel is higher than that 
for the isomerization by -9 kJ/mol(800 cm-'),'O which results 
in negligible decomposition compared to the isomerization at 
low temperatures! but substantial decomposition at high tem- 
peratures. In considering the high-temperature isomerization, 
our focus is not the isomerization, but the effect of isomerization 
on the product (butadiene) formation. We will compare our 
computations with the results of very low pressure pyrolysis 
(VLPP) of cis-2-b~tene.l~ 

In these computations we used the same input parameters 
for cis-trans isomerization as in the previous section. For the 
transition state for formation of butadiene we used the vibra- 
tional frequencies and other parameters: E2 = 22 700 cm-I, 
= 1, w = 104.3 s-l, as indicated by Alfassi et a1.I0 Assuming 
that parameter a increases with temperature and corresponds 
mainly to wall collisions'0 we put a = 2000 cm-I. 

Even though the frequency w in the VLPP experiment'0 
corresponds mainly to wall collisions, we can find the effective 
pressure which produces the same collision frequency. Thus 
from eq 21 we estimate peff = 4 x Wa, which is close to 
the lowest pressure in the Rabinovitch experiment.* 

The rate coefficient for butadiene formation for two different 
initial populations of A is shown in Figure 6 as a function of 
time along with the percentage decomposition of cis-2-butene. 
The most interesting feature is the multiple steady-state behavior 
of the rate coefficient (Figure 6). 15% of the butadiene forms 
at nearly constant rate coefficient kl during the first 0.1 s (the 
first steady state), while 25% of the product forms at t > 1 s at 
constant rate k2 corresponding to the true steady state. However, 
50% of butadiene formation occurs during a transition period 
between 0.1 and 1 s, where the rate coefficient gradually changes 
from k~ to kz. The origin of such behavior can be explained in 
the same way as the case of equilibrating isomerization: the 
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Figure 7. Comparison of the master equation calculations with the 
VLPP experiment l o  (circles), The experimental conditions correspond 
to the first steady state. 
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Figure 8. Decomposition rate coefficient versus time at different 
pressures and T = 1200 K. 

first plateau corresponds to irreversible isomerization (and 
decomposition), and the transient period between plateaus 
corresponds to the late stage of equilibration between A and B, 
where activation from low B levels is significant, while the 
second plateau corresponds to the decomposition when equili- 
bration between isomers has already been achieved. We also 
note that the time evolution of the rate coefficient does not 
depend on initial population except for the very short induction 
time (t -= s), where less than 0.1% of the product forms. 

Results of our calculations for the rate coefficients at different 
temperatures are shown in Figure 7 together with the experi- 
mental points obtained in VLPP experiment.'O The positions 
of the experimental points on a time axis were determined by 
mapping against the percentage of butadiene formation in VLPP 
measurements. According to our calculations the experimental 
points lie at the end of the first steady-state period at each 
temperature and show good agreement with our kl values (Figure 
7). Thus, we can conclude that the experimental conditionsI0 
correspond to the first steady state or, in other words, to 
irreversible isomerization. 

It should be noted that this multiple steady-state effect can 
be observed only at low pressures and at high temperatures, 
because, at high pressures, population distribution functions are 
at equilibrium due to rapid collisional energy transfer and hence 
a constant rate coefficient (Figure 8). At low temperatures, as 
we have shown, the equilibrating period is sufficiently long so 
as to be inaccessible in a practical sense. Only the early stages 
of equilibrating isomerization would be observed, which 
is essentially irreversible and thus the rate coefficient equals 
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ible isomerization at late stages of equilibration with both time- 
dependent forward and reverse rate coefficients. A system with 
isomerization and decomposition exhibits a multiple steady- 
state behavior: the first steady state corresponds to the irrevers- 
ible isomerization at early stages of equilibration between the 
isomers, while the second steady state establishes after the 
equilibrium has been achieved. The effect can be observed at 
low pressures and high temperatures. It can be seen as a change 
in the slope in the plot of logarithm of the product concentration 
versus time. 

These results may have extremely serious implications on 
the simulation of the behavior of reacting systems. For such 
applications, the essential input data are sets of rate constants 
as a function of temperature and pressure for each single-step 
reaction. The present results show that even for the simplest 
isomerization-decomposition system, below a certain pressure, 
it is not possible to describe the reaction at any temperature 
and pressure in terms of a single rate constant. We have at the 
present time no methodology for the treatment of such situations. 
In addition, the phenomena can be a potential source of error 
in the interpretation of kinetic results. A measured rate constant, 
as in Figure 7, may not be applicable under other conditions. 

In many ways the phenomena can be considered an extension 
of the well-known initial incubation time prior to the achieve- 
ment of a steady-state distribution, where it is not possible to 
specify a rate constant. This can be seen in many of the 
accompanying figures. However, unlike the isomerization 
situation, this is a vibrational relaxation problem and since the 
time scales are short it can be usually ignored. Actually, in the 
present case it can be seen that except at the lowest pressures 
the effect is small and therefore the selection of an average rate 
constant would not lead to serious errors. We are now 
investigating the more general situation, including chemically 
activated systems, so as to more properly assess the importance 
of the phenomena. 
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kf’ which can be calculated through the equilibrium constant 
cq and the steady-state relaxation rate coefficient krel. 

can be obtained 
directly from the measurements. In fact, the directly measured 
quantities are concentrations of A, B, and C, from which kd is 
obtained. It is of interest to see how the multiple steady-state 
behavior of kd reflects on the time dependencies of concentra- 
tions. Indeed, in a pure decomposition system we would expect 
a straight line if we plot AC(t) = C(-) - C(t) on a logarithmic 
scale versus time. For the system with isomerization, our 
analysis predicts a change in slope due to the transition from kl 
to k2. Figure 9 shows the time evolution of the product 
concentration from which the deviation from the straight line 
corresponding to the initial slope is easily seen. However, the 
change in slope is in constrast to what we could expect from 
values for kl and k2 (Figure 6) .  The point is that the slope in 
Figure 9 is not exactly k d ,  but kd/(l -k Kc) as can be obtained 
from summation of eqs 1 over i and 1 and adding the second 
equation to the first. Indeed, after the summation we have 

As we have mentioned, rate coefficient 

d(A+B)/dt = -k& 

We note that A + B = C(-) - C = AC and A = (A + B)/( l  + Kc) from which we obtain 

kd AC dAC - 
dt 1 + K c  

At the initial time, Kc << 1 and thus the initial slope gives kl .  
At the late stages of equilibration, Kc becomes closer to its 
equilibrium value thus lowering the slope. The resulting slope 
is defined by the ratio of kd which increases in time (Figure 6 )  
and 1 + Kc which increases too (Figure 4). Therefore, the final 
slope (steady-state slope) is always less thah k2 and might be 
less than kl ,  if eq) is large enough. 

V. Conclusions 
We have presented the time-dependent master equation 

analysis for a system with decomposition and isomerization. In 
a pure isomerization system, there are two regimes during the 
steady-state equilibration: irreversible isomerization with the 
time-independent forward rate coefficient and essentially revers- 


