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Preface

This book is derived from a 24-contact-hour, elective course in antenna theory given at
Eindhoven University of Technology, The Netherlands. The course is intended for fourth-
year students, having a BSc degree in electrical engineering. The students are presumed
to have a knowledge of electromagnetic theory and vector analysis.

The original intention in writing this book was to provide a compact, English-language
text dealing with the basics of antennas that can be taught in a limited and possibly
further shrinking time span. It would have been an alternative to many of the antenna
textbooks around that provide too much material for this course. Upon completing the
first manuscript, it appeared to be just over one hundred pages, which is too short to put
into print. Therefore it was decided to complement the text with examples and design
studies of antennas using a commercially distributed full-wave analysis software suite.
The choice made was the CST Microwave Studio®, the reason being the familiarity of the
author with this software suite. The examples and design studies are, however, described
in such a way that any other full-wave analysis software suite that the reader has access to
may be used instead. In the appropriate chapters, the theory derived will be used to assess
the dimensions of an initial, realistic (i.e. non-ideal) antenna, which will be fine-tuned to
the desired characteristics using the full-wave analysis software suite.

The theoretical parts of the book may still be taught in a course of 20–24 contact
hours, while the examples and design studies may be left to the student for self-study, or
they can be incorporated in a longer course. The CST Microwave Studio® model files
are available at a companion website.

The book is organized as follows:

Chapter 1: Introduction . In this chapter a brief history of antennas is presented. The
source of electromagnetic radiation is discussed and the mechanism by which radiated
fields emerge from an antenna is explained. A brief overview of the antenna types dis-
cussed in this book is presented. This chapter is partly taken from [1].

Chapter 2: Antenna System-Level Performance Parameters . Before the theoretical treat-
ment of antennas starts, it is good to have a knowledge of what parameters are important
to characterize an antenna and what these parameters mean. This chapter treats this topic
in detail since it is considered to be of paramount importance in understanding the ‘why’
of the mathematics to come. This chapter is taken from [1].
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Chapter 3: Vector Analysis . Finally, before beginning with the actual treatment of
antennas, experience has shown that it is wise to give a brief ‘refresher course’ in vector
algebra. In this chapter we look at working with the grad , div and curl and introduce the
∇-operator.

Chapter 4: Radiated Fields . In this chapter the calculation of far-fields from general
current distributions is introduced and the reciprocity concept is discussed.

Chapter 5: Dipole Antennas . The concepts developed in Chapter 4 are applied here to
elementary and finite length dipole antennas.

Chapter 6: Loop Antennas . Here the loop antenna are discussed, the infinitesimal loop
antenna is analyzed and the similarities with the infinitesimal dipole antenna are dealt
with. As an example, a small printed loop antenna, matched to 50 �, is designed.

Chapter 7: Aperture Antennas . In this chapter a general procedure for analyzing aperture
antennas is discussed. The theory will be applied to both a horn antenna and a parabolic
reflector antenna. As a special case of an aperture antenna, the rectangular microstrip
patch antenna will be introduced.

Chapter 8: Array Antennas . In the final chapter the topic of array antennas is explored,
but limited to linear array antennas. This chapter is partly taken from [1].

All chapters are concluded with a section of problems. The worked answers are available
at a companion website – www.wiley.com/go/visser_antennas.

Reference

1. Hubregt J. Visser, Array and Phased Array Antenna Basics , John Wiley & Sons, Chichester, UK, 2005.

Hubregt J. Visser
Veldhoven, The Netherlands
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1
Introduction

Antennas have been around now for nearly 125 years. In those 125 years wireless communication
has become increasingly important. Personal mobile communication applications are putting huge
constraints on the antennas that need to be housed in limited spaces. Therefore the common practice
of wireless engineers to consider the antenna as a black-box component is not valid anymore. The
modern wireless engineer needs to have a basic understanding of antenna theory. Before we dive
into the derivation of antenna characteristics, however, we will – in this chapter – present a brief
overview of antenna history and the mechanisms of radiation. Thus, a solid foundation will be
presented for understanding antenna characteristics and their derivations.

1.1 The Early History of Antennas

When James Clerk Maxwell, in the 1860s, united electricity and magnetism into electro-
magnetism, he described light as – and proved it to be – an electromagnetic phenomenon.
He predicted the existence of electromagnetic waves at radio frequencies, that is at much
lower frequencies than light. In 1886, Maxwell was proven right by Heinrich Rudolf
Hertz who – without realizing it himself1 – created the first ever radio system, consisting
of a transmitter and a receiver, see Figure 1.1.

The transmitting antenna, connected to a spark gap at the secondary windings of a
conduction coil, was a dipole antenna. The receiving antenna was a loop antenna ending
in a second spark gap. Hertz, who conducted his experiments at frequencies around
50 MHz, was able to create electromagnetic waves and to transmit and receive these
waves by using antennas. This immediately raises two questions:

1. What is an antenna?
2. How is electromagnetic radiation created?

1 Hertz was not after creating wireless communication but proving the Maxwell equations experimentally.

Antenna Theory and Applications, First Edition. Hubregt J. Visser.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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Transmitter Receiver

Figure 1.1 Hertz’s radio system. With the receiving one-turn loop, small sparks could be observed
when the transmitter discharged. From [1].

1.2 Antennas and Electromagnetic Radiation

From the previous it is obvious that

An antenna is a device for transmitting or receiving electromagnetic waves. An
antenna converts electrical currents into electromagnetic waves (transmitting
antenna) and vice versa (receiving antenna).

Before we describe this in detail, we will first take a closer look at the origin of electro-
magnetic radiation.

1.2.1 Electromagnetic Radiation

The source of electromagnetic radiation is accelerated (or decelerated) charge.
Let’s start with a static, charged object and have a look at the electric field lines.

These lines are the trajectories of a positively charged particle due to this static,
charged object. Electric field lines are always directed perpendicular to the surface of
a charged object and start and end on charged objects. Electric field lines due to single
charged objects start at or extend towards infinity. For a positively charged object, the
electric field lines start at the object and extend towards infinity, for a negatively charged
object they start at infinity and end at the object.

For explaining the mechanisms of radiation, the direction of the electric field lines does
not matter, therefore in Figure 1.2(a), where we show a uniformly moving particle at a
certain instant of time, we do not indicate the direction of the field lines.

The uniformly charged particle is accelerated between t = 0 and t = t1, see Figure
1.2(b), after which it continues its uniform movement. In Figure 1.2(b) we have indicated
the position of the particle at the start (t = 0) and at the end (t = t1) of the acceleration.
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t = t1

t = t1

t = t1

t > t1

t < t1t = 0

t = 0

(a) (b) (c)

Figure 1.2 Electric field lines of a charged particle. (a) Field lines at a certain moment of time
for a uniformly moving charged particle. (b) The particle is accelerated between t = 0 and t = t1.
The position of an observer, traveling with the speed of light along an electric field line at t = t1
is indicated with the circle. (c) Electric field lines at t = 0 and t = t1.

Also indicated is the position of an observer that has moved with the speed of light along
a static electric field line from the particle, for the duration of the acceleration (t1).

In Figure 1.2(c) we repeat Figure 1.2(b), where we now also indicate static electric
field lines associated with the particle at t = 0 and at t = t1.

We now think of ourselves positioned anywhere on the ‘observer circle’ and accept that
nothing can move faster than the speed of light. Then, everywhere from the ‘observer
circle’ to infinity, the static field lines must follow those associated with the particle
position at t = 0. Everywhere inside the circle, the static field lines must follow those
associated with the particle position at t = t1. Since electric field lines must be continuous,
so-called kinks must exist at the observer position to make the electric field lines connect,
see Figure 1.3.2

Having explained the construction of electric field lines for an accelerated charged
particle, we can now take a closer look at the electric field lines as a function of time.
In Figure 1.4 we look at the electric field lines at different times within the acceleration
time interval.

When we take the disturbances, that is the transverse components of the electric field,
taken at the subsequent moments and add them in one graph, as in Figure 1.4, we see
that these disturbances move out from the accelerated charge at the speed of light. Asso-
ciated with the changing electric field is a changing magnetic field. Both fields are in
phase3 since they are due to a single event. The electric and magnetic fields travel along
in phase, their directions being perpendicular to each other. This is what we call an
electromagnetic wave.

2 The continuous electric field lines are shown a little displaced to clarify the construction from the initial and end
position static electric field lines.
3 As opposed to the situation for a coil or a capacitor.
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t = t1

t > t1

t < t1

Figure 1.3 The electric field lines of a briefly accelerated charged particle must form kinks in
order to connect the field lines associated with the initial and end position of the particle, thus
forming continuous electric field lines.

t = t2 > t1 t = t3 > t2

t

t

t = t4 > t3t = t1

Figure 1.4 The electric field lines of a briefly accelerated charged particle at subsequent instances
of time, and the resulting transverse field moving out at the speed of light.

Accelerating (or decelerating) charges may be found in electrically conducting wires at
positions were the wire is bent, curved, discontinuous or terminated. Before we discuss
the radiation from a wire dipole antenna in detail, we note that, see Figure 1.4, radiation
does not take place in directions along the charged particle acceleration.

Next, we will take a look at the radiation from a short dipole antenna.
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1.2.2 Short Wire Dipole Radiation

We consider two short – that is much shorter than a wavelength – electrically conducting
wires, each folded back 90 degrees, and connected to an AC source. We will look at the
electric field around this structure at different instances of time within one half of the
period T, see Figure 1.5.

• t = 0+, see Figure 1.5(a). The time is a short while after t = 0. The source has
been turned on and charge is accelerated from the source to the wire ends. Because
of the accelerating charges at the feed point, a transverse electric field component is
traveling outward, in a direction perpendicular to the wires. Since field lines have to
be continuous and start and end perpendicular to a charged body, the electric field line
takes the form as shown. Underneath the dipole, the current is shown as a function of
time; the time of the snapshot (0+) is indicated with a black dot.

• t = (
T
4

)
, see Figure 1.5(b). At this moment, the current has reached its maximum

value, its change with time has become zero. The electric field lines are as shown in the
figure. The transverse electric field component that was created at t = 0+ has traveled
a distance of a quarter of a wavelength. New transverse electric field components have
been created after the creation of this first one.

• t = (
T
4

)+
, see Figure 1.5(c). The current has become less than the maximum value

and the time change of the current has changed sign. Charges are now accelerated into

(a)

(d) (e)

(b) (c)

+

+
+

−
−
−

l/4

+

−

+

−

l/2

0

0
0

0
0

0

l/2

+

+
+

−
−
−

l/4

Figure 1.5 Electromagnetic radiation by charges in oscillatory acceleration. (a) t = 0+.
(b) t = (

T
4

)
. (c) t = (

T
4

)+
. (d) t = (

T
2

)−
. (e) t = (

T
2

)
.
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(a) (b)

Figure 1.6 Detachment of electric field lines from a dipole antenna at different times.
(a) t = (

T
2

)+
. (b) t = T +.

the opposite direction and new electric field lines, oppositely directed relative to the
existing ones, may be thought of as being created.

• t = (
T
2

)−
, see Figure 1.5(d). The current amplitude has become very small and excess

charges are only present at the dipole tips. Additional, upward-directed, transverse field
lines have been created since t = (

T
4

)+
. The first one of these has traveled a distance

of nearly a quarter of a wavelength.
• t = (

T
2

)
, see Figure 1.5(e). Both halves of the dipole antenna have become charge free.

No excess charge is present and the current has become zero. The electric field lines do
not need to be perpendicular to the conductors anymore, since these conductors have
become charge-free. As a consequence, the field lines form closed loops and detach
from the conductors.

For clarity reasons we have shown the mechanism of radiation from a dipole in a plane
and only at one side of the dipole. Of course, in this plane, the radiation takes place
at both sides, see Figure 1.6. In three dimensions, the field line pattern is rotationally
symmetric around the axis of the dipole antenna. For the same clarity reasons we have
left out magnetic field lines in our explanation. The magnetic field lines form closed loops
around and perpendicular to the electric field lines.

Most wire antennas may be thought to consist of an infinite number of elementary (that
is: infinitely small) dipole antennas.

With electromagnetic radiation and dipole antenna radiation now explained, we can
continue with our short overview of antenna history.

1.3 The Modern History of Antennas

Guglielmo Marconi grasped the potential of Hertz’s equipment and started experimenting
with wireless telegraphy. In 1895 he hit upon a new arrangement of his equipment that
suddenly allowed him to transmit and receive over distances that progressively increased
up to and beyond 1.5 km [2, 3]. Marconi had enlarged the antenna. His monopole antenna,4

4 A monopole forms a dipole antenna together with its image in the ground.
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(a) (b)

Figure 1.7 Marconi’s antennas in 1895. (a) Scheme of the transmitter used by Marconi at Villa
Griffone. (b) Scheme of the receiver used by Marconi at Villa Griffone. From [1].

see Figure 1.7, was resonant at a wavelength much larger than any that had been studied
before and it was this creation of long-wavelength electromagnetic waves that turned out
to be the key to his success. It was also Marconi who, in 1909, introduced the term
antenna for the device that was formerly referred to as an areal or an elevated wire
[3, 4].

The invention of the thermionic valve or diode by Fleming in 1905 and the audion
or triode by Lee de Forest in 1907 paved the way for a reliable detection, reception
and amplification of radio signals. From 1910 onwards broadcasting experiments were
conducted that resulted in Europe in 1922 in the forming of the British Broadcasting
Corporation (BBC) [5].

In the 1930s a return of interest to the higher end of the radio spectrum took place.
This interest intensified with the outbreak of World War II with the immediate need
for compact communication equipment as well as compact (airborne), high-resolution
radar. Antenna design became a new specialism. At the end of World War II, antenna
theory was mature to a level that made the analysis possible of, among others, free-
standing dipole, horn and reflector antennas, monopole antennas, slots in waveguides
and arrays thereof. The end of the War also saw the beginning of the development
of electronic computers. The introduction of the IBM-PC5 in 1981 considerably helped
in the development of numerical electromagnetic analysis software. The 1980s may be
seen as the decade of numerical microwave circuit and planar antenna theory devel-
opment. In this period the numerical electromagnetics code (NEC), for the analysis
of wire antennas, was commercially distributed. The 1990s, however, may be seen as
the decade of the numerical electromagnetic-based microwave circuit and (planar, inte-
grated) antenna design. In 1989 Sonnet started distribution, followed in 1990 by HP

5 4.77 MHz, 16 kb RAM, no hard drive.
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(now Agilent), High Frequency Structure Simulator (HFSS).6 [6] These two numerical
electromagnetic analysis tools were followed by Zeland’s IE3D, Remcom’s XFdtd, Agi-
lent’s Momentum, CST’s Microwave Studio, FEKO from EM Software & Systems,
and others.

Despite the diversity of the numerical electromagnetic analysis software commercially
available today, it is the author’s strong belief that there exists, and will continue to exist,
a need to develop an understanding of electromagnetics and antenna theory. At least a
basic understanding needs to be present to be able to evaluate the results obtained with
numerical electromagnetic analysis software. And a bit more than a basic understanding
is necessary for designing new antennas. In the design process, the choice for a particular
type of antenna is mainly dictated by the volume available for the antenna, the frequency
(directly related to this volume) and the distance over which wireless communication
needs to be performed.

1.4 Frequency Spectrum and Antenna Types

The radio frequency (RF) radiation of electromagnetic waves is used for frequencies that
lie roughly between 30 Hz and 300 GHz. Table 1.1 [7] lists a number of frequency bands,
associated wavelengths7 and applications for these bands.

In the table we have made use of the IEEE-defined frequency band designations [8].
We stop at a frequency of 300 GHz, where infrared starts, followed by visible light from
400 THz upwards.

Of the many antenna types that exist, only a few basic ones will be discussed in detail
in this book. Figure 1.8 shows these antenna types.

Other antenna types may be seen as combinations of these basic antennas (e.g. Yagy-
Uda antennas are combinations of active and short-circuited dipole antennas placed in
parallel) or derivatives of one of the basic antennas (e.g. a microstrip patch antenna may
be seen as consisting of two rectangular aperture antennas). The detailed discussion of
most of these antennas is beyond the scope of this short course in antenna theory and
may be found in specialist textbooks, see for example [9].

1.4.1 Dipole Antennas

The short dipole antenna consists of two wires or circular tubes having a length much
shorter than the wavelength and placed along the same axis, see Figures 1.5 and 1.6. The
dipole antenna is voltage-excited in the small gap between the two dipole halves. This may
be accomplished through a transmission line, connecting the gap to the voltage source.
Short dipoles are used for radio broadcasting systems at VHF frequencies and below.

The resonant dipole antenna is an antenna where the length of the two wires or tubes
together is a multiple (most often one) of half the wavelength. Half-wavelength dipole
antennas are used for small-band applications at low GHz frequencies.

6 Currently Ansoft HFSS.
7 λ = c/f , where λ is the wavelength, c is the velocity of light and f is the frequency.
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Table 1.1 RF Frequency band designations, wavelengths and applications

Frequency band Frequencies Wavelengths Applications

extremely low 30–300 Hz 1000–10,000 km Submarine
frequency (ELF) communications

infralow frequency (ILF) 0.3–3 kHz 100–1000 km –
very low frequency 3–30 kHz 10–100 km Navigation

(VLF) Weather
low frequency (LF) 30–300 kHz 1–10 km Navigation

Maritime
communications

Information and
weather systems

Time systems
medium frequency (MF) 0.3–3 MHz 0.1–1 km Navigation

AM radio
Mobile radio

high frequency (HF) 3–30 MHz 10–100m Citizen’s band (CB)
Shortwave radio
Mobile radio
Maritime radio

very high frequency 30–300 MHz 1–10m Amateur radio
(VHF) VHF TV

FM radio
Mobile satellite
Mobile radio
Fixed radio

ultra high frequency 0.3–3 GHz 0.1–1m Microwave
(UHF) Satellite

UHF TV
Paging
Cordless telephony
Cellular telephony
Wireless LAN

super high frequency 3–30 GHz 1–10 cm Microwave
(SHF) Satellite

Wireless LAN
extremely high 30–300 GHz 1–10 mm Microwave
frequency (EHF) Satellite

Radiolocation

1.4.2 Loop Antennas

Small loop antennas may be considered to be magnetic dipole antennas. The fields from
a small loop antenna are similar to those from a small dipole antenna with the electric
and magnetic fields interchanged, as we will see in a later chapter. Loop antennas are
used, among others, in direction finding systems.
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(a) (b)

(c) (d)

Figure 1.8 Basic antenna types. (a) Dipole antenna. (b) Loop antenna. (c) Horn antenna.
(d) Parabolic reflector antenna.

1.4.3 Aperture Antennas

An aperture antenna consists of an ‘opening’ in a metallic surrounding. The fields across
this opening, that is the aperture, radiate into free space. An electromagnetic horn is an
antenna where the radiating aperture is matched to the waveguiding system that supports
the excitation signal. This matching is accomplished through properly shaping the transi-
tion from waveguiding structure to aperture. Aperture antennas are used in the GHz range
of frequencies.

1.4.4 Reflector Antennas

A reflector antenna is also an aperture antenna. A primary radiator (dipole or horn antenna)
in the focal point of a parabolic reflector illuminates the reflector. The aperture formed
by this reflector then radiates into free space. Since the radiated waves are concentrated
into a beam, the width of which is inversely proportional to the size of the aperture as
we will see in a later chapter, reflector antennas offer a convenient way to concentrate
radiation. This allows long distance communication in the low and high GHz range of
frequencies. Parabolic reflector antennas are used, among others, for satellite television
transmission and reception, and for radar (radio detection and ranging).
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1.4.5 Array Antennas

Antennas may be combined with similar or other types of antenna to form an array
antenna. The antennas within the array we designate as antenna elements or array elements
or, for short, elements . The combination of all the elements we designate array antenna ,
antenna array or array . Commonly, similar elements are positioned at regular intervals
on a line (linear array antenna) or in a plane (planar array antenna). By forming an array,
a radiation beam may be created having a small beamwidth. By electronically controlling
the phase differences between the elements, we may electronically direct the beam in
different directions without physically rotating the antenna. This possibility of electronic
beam steering or scanning makes (phased) array antennas particularly attractive.

1.4.6 Modern Antennas

In this book we will briefly touch upon the subject of modern antennas. By ‘modern’
we mean antennas that can be considered as derivatives of the basic antennas that are
dealt with in detail. Of all modern antennas we will, briefly, discuss the printed monopole
antenna, the inverted F antenna (IFA) and the microstrip patch antenna, see Figure 1.9.
These antennas may be encountered in today’s wireless devices.

(g) (h)

(a) (b) (c) (d)

(e) (f)

Figure 1.9 Modern antennas. (a) Microstrip printed monopole antenna. (b) Coplanar waveg-
uide (CPW) printed monopole antenna. (c) Microstrip IFA. (d) CPW IFA. (e) Microstrip excited
microstrip patch antenna. (f) Probe excited microstrip patch antenna. (g) Side view of electric field
lines patch antenna. (h) Top view of electric field lines patch antenna.
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The printed monopole antenna, either in microstrip technology (with a separate trace
and a ground layer, see Figure 1.9(a) or in CPW technology (with a combined trace and
ground layer, see Figure 1.9(b)), may be regarded as an asymmetric printed dipole antenna,
the arms being the monopole and the ground. The asymmetry causes differences in the
current distributions in the two arms which results in some disturbances in the dipole
radiation pattern. To avoid the existence of multiple lobes, the length of the ground plane
should remain smaller than a quarter of a wavelength.

The inverted F antenna (IFA) may be realized in microstrip technology, see
Figure 1.9(c), or in CPW technology, see Figure 1.9(d). The IFA may be regarded as a
printed monopole antenna where the top section has been folded down. The folded-down
part, being parallel to the ground plane, introduces capacitance to the input impedance.
This additional capacitance is compensated for by a short circuited stub. The realization
of the short circuit is straight forward in CPW technology, but requires a via to the
ground plane in microstrip technology, see Figure 1.9(c).

A microstrip patch antenna, see Figures 1.9(e), 1.9(f), may be considered as a cavity
with electrical conducting top and bottom and magnetically conducting side walls. The
fields inside the ‘cavity’ may be excited by, among others, a microstrip transmission
line, see Figure 1.9(e), or a probe, see Figure 1.9(f). Since the walls of this ‘cavity’ are
not perfectly conducting, the electric fields will ‘fringe’ at the edges, see Figure 1.9(g),
and the horizontal components of these so-called ‘fringe fields’ are responsible for the
radiation. If the length of the patch is chosen to be half a wavelength in the dielectric
sheet, the radiation may be thought to originate from two in-phase slots as depicted in
Figure 1.9(h).

1.5 Organization of the Book

Before we dive into the field calculations of different antenna types, we will first introduce,
in Chapter 2, the so-called performance parameters of antennas. These parameters serve to
evaluate antennas, offer a means to compare them to each other and offer the possibility
of including antenna performance in a high-level system evaluation. Since a thorough
understanding of these parameters is considered to be of paramount importance for the
practical antenna engineer, we designate a large portion of this book to this topic.

With the antenna parameters well understood, the derivation of these parameters may
be undertaken for a selected group of antennas. Before we do so, however, we think
it is wise to first give a short refresher course in vector algebra. This is the topic of
Chapter 3. Then, in Chapter 4, we introduce the calculation of far-fields from general
current distributions and introduce the concept of reciprocity. In Chapter 5, we will use
the concepts developed in Chapter 4 to calculate the fields of an elementary dipole antenna
and a half-wave dipole antenna. In Chapter 6 we will analyze the loop antenna. Chapter 7
is devoted to aperture antennas, and the theory developed there will be applied to a horn
antenna, a parabolic reflector antenna and a rectangular microstrip patch antenna. Finally,
in Chapter 8 we will introduce array antennas.

Most chapters are concluded with a more practically oriented section wherein the
acquired knowledge is used for designing a modern (mobile) antenna using CST
Microwave Studio® (CST MWS), a commercially available specialist tool for the
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3D EM simulation of high frequency components [10]. The steps, outcomes and
resulting next iterations are explained so that having access to this software suite is not
absolutely necessary.

1.6 Problems

1.1 What is an antenna?

1.2 What is the source of electromagnetic radiation?

1.3 Why do point source electromagnetic radiators not exist in reality?
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2
Antenna System-Level
Performance Parameters

Now that we have developed a basic understanding of the operation of antennas, based on physical
reasoning, it is time to quantify and interrelate the different antenna parameters that describe antenna
functioning. Therefore, in this chapter we will introduce these system-level performance parameters
for antennas.1 With these parameters we will be able to calculate the effect of an antenna or antennas
in a communication or radar system.

2.1 Radiation Pattern

In the previous chapter we saw that accelerating charge – and thus displacement of
charge – is the cause of electromagnetic radiation. Due to this displacement, every
antenna must have a non-zero size. We have already seen that even the smallest-size
antenna produces an electromagnetic radiation (propagating field disturbance) that is not
uniform (i.e. not equally distributed in all directions), see Figures 1.4–1.6. This non-
uniform radiation is described by the so-called radiation pattern , which is evaluated in the
far-field .

Although uniformly radiating antennas or isotropic radiators cannot exist in real life,
they may come in handy for comparing different antennas. The uniform radiator must
then be seen as a mathematical abstraction.

1 Portions of text in this Chapter have been reproduced from: Visser, H. ‘Array and Phased Array Antenna Basics’.
This includes the following text: For the half wave (p. 17) . . . with respect to the main lobe (p. 18); In figure
2.5 (p. 20) . . . a matter of taste (p. 22); So far we have (p. 25) . . . into other directions (p. 26); The directivity
(p. 26) . . . losses in the antenna (p. 27); In comparing (p. 28) . . . need larger antennas (p. 46). Reproduced with
permission from John Wiley & Sons, Ltd. This is presented in [1].

Antenna Theory and Applications, First Edition. Hubregt J. Visser.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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2.1.1 Field Regions

When talking about radiated fields, we have to take into account the distance relative to
the antenna where these fields are evaluated. Close to the antenna, a region exists where
energy is stored and returned to the antenna. This region is called the reactive near-
field region of the antenna [2, 3]. Moving away from the antenna, through the reactive
near-field region, the next region encountered is called the radiating near-field region or
Fresnel region [2, 3]. The radiating near-field region is characterized by the fact that
the radiation fields dominate the reactive fields and that the angular distribution of this
radiated field is dependent on the distance from the antenna.

The far-field region is that region where not only the radiating fields predominate,
but also the angular field distribution has become independent of the distance from the
antenna [2, 3]. In the far-field region, the electric field vector E and the magnetic field
vector H are perpendicular to the observation direction r and to each other, see Figure 2.1.
Power flow in the far-field region is therefore only in the direction of r, in contrast to the
situation in both near-field regions.

The radiated fields of an antenna will be evaluated in the far-field region. In real-life
situations, the separation between transmitting antenna and receiving antenna will (almost)
always be such that the antennas are in each other’s far-field regions. As a rule of thumb,
the far-field is the region for which

r ≥ 2D2

λ
, (2.1)

where D is the largest dimension of the antenna and λ is the wavelength used.

z

y

E

ûθ

ûϕ H

antenna position

r sin q cos j

r sin q

r sin q sin j

j

r cos q

r = |r|

x

q

Figure 2.1 An antenna in a rectangular coordinate system, the relation between rectangular and
spherical coordinates and the radiated electric and magnetic far-fields. ûϑ and ûϕ are unit vectors
in the ϑ- and ϕ-direction, respectively.
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As we will see in a later chapter, the equality sign in equation (2.1) corresponds to a
maximum phase error of 22.5◦.

Although we have thus indicated a sharp boundary between the near- and far-field
regions, in practice these boundaries are not that sharp or precisely determined.

We will now look at the phase differences stemming from different parts of an antenna
that will cause constructive interference in some directions and destructive interference
in other directions, knowing that we have to evaluate these effects in the far-field region.

2.1.2 Three-Dimensional Radiation Pattern

For the half-wave dipole antenna we have seen, in the previous chapter, that no radiation
occurs in directions along the dipole axis. To explain this in more detail, we consider a
horizontal half-wave dipole that we represent by two (hypothetic) isotropic radiators, 1
and 2 in Figure 2.2, spaced apart by half a wavelength. We will have a look at the electric
field in the far-field region, for the three situations, depicted I, II and III in the Figure.2

• Situation I. In the direction along the dipole axis, the waves emitted by isotropic
radiators 1 and 2 are 180◦. out of phase and therefore cancel each other out. There is
no radiation in directions along the dipole axis.

• Situation II. In the direction perpendicular to the dipole axis, the waves emitted by
isotropic radiators 1 and 2 are in phase and add, giving the maximum possible ampli-
tude. When we evaluate these signals at infinity – what we should do, strictly speaking,
to have a far-field region evaluation – the two distinct directions stemming from
isotropic radiators 1 and 2 become one.

• Situation III. For a direction in between parallel and perpendicular to the dipole axis,
the two waves add, but with a phase difference due to the fact that one wave reaches
a far-field evaluation point before the other one does. Therefore, the amplitude of the
combined waves will be less than maximum.

In Figure 2.2, we have restricted ourselves to the evaluation in the plane parallel to the
dipole axis and containing the dipole. If we evaluate the electric far-field amplitude for
all possible angular positions ϑ , ϕ, the three-dimensional radiation pattern of Figure 2.3
results. Note that this pattern is for a half-wave dipole antenna directed along the Cartesian
z-axis, also indicated in the figure. Contour plots of the radiation pattern (equi-amplitude
lines) are shown, projected on the x,y-plane.

We see that the radiation pattern is symmetrical around the dipole axis, at maximum
in the directions perpendicular to the dipole axis and zero in the directions along the
dipole axis.

Although we are dealing here with a basic antenna having a relatively simple radiation
pattern, we already encounter some difficulty in reading and interpreting this radiation
pattern. This will become worse for more complicated antennas. To illustrate this we
have created the radiation pattern shown in Figure 2.4, which could be the pattern of a
pyramidal horn antenna. The position and orientation of this horn is indicated in the figure.

2 We could also have chosen to look at the magnetic field since the magnetic field is perpendicular to, and in phase
with, the electric field.
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1 2

I

II
III

Figure 2.2 A half-wave dipole is represented by two isotropic radiators, 1 and 2, spaced apart by
half a wavelength.

z

x

y

Figure 2.3 Three-dimensional electric field radiation pattern of a z-directed half-wave
dipole antenna.

Although we encounter even more difficulties in the interpretation of this pattern, we
can still distinguish some salient features of this pattern. First of all we observe angular
regions of strong radiation, surrounded by regions of weak radiation. We call these regions
of strong radiation lobes , see 1, 2 and 3 in Figure 2.4. The biggest lobe, number 1 in
Figure 2.4, is called the main lobe or main beam . The main lobe contains the direction of
maximum radiation. Here, that direction is given (in spherical coordinates) by ϑ = 0. All
lobes other than the main lobe are called minor lobes or side lobes . Side lobes, numbers
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x
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Figure 2.4 Three-dimensional electric field radiation pattern of a hypothetical pyramidal
horn antenna.

2 and 3 in Figure 2.4, are radiation lobes pointing in directions other than the main lobe.
The side lobe number 3 in the figure is also called a back lobe, due to its position relative
to the antenna, that is 180◦ rotated with respect to the main lobe.

It is clear that the three-dimensional plot serves best for inspection purposes, for
example the identification of side lobes and their angular distribution. It is not easy to
obtain qualitative information from this representation. For that last purpose it is customary
to use planar cuts of the three-dimensional radiation patterns.

2.1.3 Planar Cuts

In Figure 2.5 a planar cut of the three-dimensional radiation pattern of a half-wave dipole
antenna, see Figure 2.3, is shown.

This normalized, planar cut, transformed to the two-dimensional domain, is shown in
Figure 2.6.

The elevation angle ϑ increases, going clockwise around the circle. The amplitude of
the electric field is plotted along the radius of the circle.

Normally, the azimuth angle ϕ where the cut is taken should be specified, but since in
this particular case we are dealing with a radiation pattern that is rotationally symmetric,
all cuts are identical.

A planar cut of the (artificial) radiation pattern of the hypothetical pyramidal horn
antenna, see Figure 2.4, is shown in Figure 2.7.

This normalized, planar cut, transformed to the two-dimensional domain, is shown in
Figure 2.8.

Although, all information can be read from the polar plots and the polar plots correspond
to our perception of the physical three-dimensional world, a rectangular plot may be found
helpful in observing the details in the side lobes.
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Figure 2.5 Planar cut from the three-dimensional radiation pattern of a half-wave dipole antenna
shown in Figure 2.3.
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Figure 2.6 Normalized polar plot of the electric field radiation pattern of a half-wave
dipole antenna.

Figure 2.7 Planar cut from the three-dimensional radiation pattern of a hypothetical pyramidal
horn antenna as shown in Figure 2.4.
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Figure 2.8 Normalized, polar plot of the electric field radiation pattern of a hypothetical pyramidal
horn antenna.

To construct rectangular plots, we return to the three-dimensional domain, where we
now represent the field amplitude in a different format. In the horizontal plane, we now
represent ϑ and ϕ in a polar format: ϑ varies between 0◦ and 180◦ going from the
center of the circle to the outer rim. ϕ varies between 0◦ and 360◦, following the circle
contour. The amplitude of the radiated electric far-field is plotted along the vertical axis.
Figures 2.9 and 2.10 represent the radiation patterns according to this format.

By taking planar cuts through planes ϕ = constant, we obtain the desired rectangular
plots – with the angle ϑ along the horizontal axis and the electric field amplitude along
the vertical axis – as shown in Figures 2.11 and 2.12.

The correspondence between rectangular and polar plots is shown in Figure 2.13.

z

j

q

Figure 2.9 Alternative three-dimensional electric field radiation pattern of a half-wave
dipole antenna.
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Figure 2.10 Alternative three-dimensional electric field radiation pattern of a hypothetical
pyramidal horn antenna.
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Figure 2.11 Planar cut from the three-dimensional radiation pattern of a half-wave dipole antenna
as shown in Figure 2.9.

Whether a polar or a rectangular plot of the radiation pattern is used, is mainly a matter
of taste. The author’s taste is for rectangular patterns, especially for observing details,
and for power patterns over field patterns .

2.1.4 Power Patterns

The radiation patterns shown thus far have been so-called field patterns . In general, we
are not directly interested in the angular electric field amplitude distribution, but more in
the angular power distribution. In the far-field region, the power is related to the electric
field through a square-law relationship.
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Figure 2.12 Planar cut from the three-dimensional radiation pattern of a hypothetical pyramidal
horn antenna as shown in Figure 2.10.
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Figure 2.13 Correspondence between polar and rectangular radiation patterns. (a) Half-wave
dipole antenna. (b) Pyramidal horn antenna.
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To demonstrate this, we start by stating that the electric far-field of an antenna, in polar
coordinates, is given by

Eϑ(r) = Eϑ (ϑ, ϕ)
ejk0r

r
, (2.2)

Eϕ(r) = Eϕ (ϑ, ϕ)
ejk0r

r
, (2.3)

Er(r) = 0, (2.4)

where r is the distance, ϑ and ϕ are elevation and azimuth angle, respectively, and
k0 = 2π/λ is the wave number. In a later chapter these equations will be derived, as well
the relation between magnetic and electric field in the far-field of an antenna:

H(r) = 1

Z0
ûr × E(r), (2.5)

where Z0 = √
μ0/ε0 is the characteristic impedance of free space.

The power density or Poynting’s vector S(r, t), radiated by the antenna at time t in the
direction r, is given by

S(r, t) = E (r, t) × H (r, t) = Re
[
E(r)ejωt

] × Re
[
H(r)ejωt

]
= 1

2

[
E(r)ejωt + E∗(r)e−jωt

] × 1

2

[
H(r)ejωt + H∗(r)e−jωt

]
= 1

4

[
E(r) × H(r)ej2ωt + E∗(r) × H∗(r)e−j2ωt + E(r) × H∗(r) + E∗(r) × H(r)

]
.

(2.6)

The time-averaged Poynting vector S(r) over one period T = 2π/ω is then found to be

S(r) = 1

T

∫ T

0
S(r, t)dt = 1

4

[
E(r) × H∗(r) + E∗(r) × H(r)

] = 1

2
Re

[
E(r) × H∗(r)

]
.

(2.7)

Substitution of equation (2.5) in equation (2.7) leads to

S(r) = 1

2
Re

[
E(r) × H∗(r)

] = 1

2Z0
Re

[
E(r) × (

ûr × E∗(r)
)]

= 1

2Z0
Re

[
E(r) · E∗(r)ûr − E(r) · ûrE∗(r)

]
= 1

2Z0
|E(r)|2 ûr . (2.8)

In the above equation use has been made of E(r) · ûr = 0. This follows from equations
(2.2)–(2.4), that state that the electric field is perpendicular to ûr . The vector algebra used
in equation (2.8) will be reviewed in the next chapter.
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Figure 2.14 Power radiation pattern for a hypothetical pyramidal horn antenna.

So by taking the square of the electric field amplitude of the normalized field pattern,
we may obtain the normalized power pattern . The normalized power pattern (in the plane
ϕ = 0) for the hypothetical pyramidal horn antenna is shown in Figure 2.14.

We see that by plotting the power instead of the field amplitude, we seem to have lost the
detailed information in the side lobe region. Ideally, we would want to observe the same
detail of information in the side lobes as in the main lobe. This may be accomplished
by plotting the angular power distribution not on a linear scale (as we have done in
Figure 2.14) but on a logarithmic scale. In Figure 2.15 the power pattern is shown
in decibels , where x(dB) = 10 log(x).

2.1.5 Directivity and Gain

So far we have been comparing the radiated field and power only to the maximally
radiated field or power of the same antenna. If we want to compare different antennas
with each other, we need to have a reference to compare them to. This reference is taken
to be the isotropic radiator.

Although we know that the isotropic radiator is a physical abstraction, it still may serve
as a reference for real life antennas. The (hypothetical) isotropic radiator, radiates equally
in all directions. Its normalized, three-dimensional electric field or power pattern, on a
linear scale, therefore is a sphere with radius one.

The directivity function , D(ϑ, ϕ), is defined as the power radiated by an antenna
in a direction (ϑ, ϕ), compared to the power radiated in that same direction by an
isotropic radiator.
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Figure 2.15 Power radiation pattern for a hypothetical pyramidal horn antenna on a logarithmic
(decibel) scale.

The power radiated in a certain direction by an isotropic radiator is equal to the amount
radiated into every other direction and is equal to Pt/4π , where Pt is the total transmitted
power and Pt/4π therefore is the radiation intensity of the isotropic radiator.3 Thus

D(ϑ, ϕ) = P(ϑ, ϕ)

Pt/4π
, (2.9)

where P(ϑ, ϕ) is the power radiated by the actual antenna in the direction (ϑ, ϕ).
So, we compare the power radiated by the actual antenna to the power that would have

been radiated by an isotropic radiator, radiating the same total amount of power.
In Figure 2.16 we show both the three-dimensionally radiated power by a half-wave

dipole and the radiated power by an isotropic radiator. Both antennas – the real half-
wave dipole antenna and the hypothetical isotropic radiator – have the same total
transmitted power.

The figure clearly shows the value of using the isotropic radiator as a reference. We
see that in some directions, the half-wave dipole antenna radiates more power than the
isotropic radiator while for other directions the opposite is true. Since both antennas have
the same amount of total transmitted power, we may transform the three-dimensional
radiation pattern of one antenna into that of the other by reducing power in certain
directions and increasing power into other directions.

The directivity , D, is defined as the maximum of the directivity function:

D = max[D(ϑ, ϕ)]. (2.10)

3 4π is the value of the solid angle of a complete sphere. Compare this three-dimensional angle with an angle in
the two-dimensional domain, where 2π is the angle of a complete circle.
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Figure 2.16 Three-dimensional, normalized power radiation pattern of a (hypothetical) isotropic
radiator and a half-wave dipole antenna.

For the half-wave dipole antenna, the directivity is D = 1.64 as we will see in a later
chapter or D = 2.15 dBi, meaning that the half-wave dipole antenna at maximum radiates
1.64 times as much power as an isotropic radiator would do, transmitting the same total
amount of power.

In general though, the total transmitted power of an antenna is not known, or is difficult
to assess. Therefore, a second function exists: the gain function , G(ϑ, ϕ). The gain func-
tion resembles the directivity function, except for the total radiated power having been
replaced by the total accepted power, Pin,

G(ϑ, ϕ) = P(ϑ, ϕ)

Pin/4π
. (2.11)

Pin is easier to assess than the total radiated power.
The gain function does not take impedance mismatch on the antenna terminals into

account. If 99% of the power delivered to the antenna terminals is reflected, the gain func-
tion tells us how the remaining 1% of this power (i.e. the accepted power) is distributed
in space. The gain , G, is the maximum of the gain function,

G = max[G(ϑ, ϕ)]. (2.12)

The quotient of gain and directivity equals the quotient of total radiated power and
total accepted power and is called the radiation efficiency , η [3].

η = G

D
= Pt

Pin
. (2.13)

The efficiency is smaller than one due to ohmic and/or dielectric losses in the antenna.
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2.1.6 Antenna Beamwidth

In comparing antennas we may use the gain we just discussed. But this is a number that
only tells us about the maximum radiation. Often we want to know the shape of the area
of maximum radiation. For that purpose we use the beamwidth . The beamwidth tells us
about the shape of the main lobe. Different beamwidth definitions exist. The two most
often used beamwidths are shown in Figure 2.17.

The half-power beamwidth , ϑHP, is the angular separation between the points on a
cut of the main lobe where the transmitted (received) power is half that of the maxi-
mum transmitted (received) power. This is shown in Figure 2.17(a). Since 10 log(0.5) =
−3.01 dB ≈ −3 dB, ϑHP is found on a logarithmic scale on the interception points where
the main lobe is 3 dB under the maximum value, see Figure 2.17(b). The half-power
beamwidth is therefore also known as the 3 dB beamwidth .

Other less commonly used definitions for beamwidth are the first null beamwidth , ϑFN,
indicated in Figure 2.17(a), 2.17(b) and the 10 dB beamwidth . In general, when the term
beamwidth is used, the 3 dB beamwidth is meant.

Also indicated in Figure 2.17(b) is the level of the first and highest side lobe. This
level is known as the side-lobe level (SLL).

The cuts are normally taken in the so-called E-plane and H-plane, also known as the
principal planes . The E-plane is the plane that contains the electric field vector and the
direction of maximum radiation. The H -plane is the plane that contains the magnetic field
vector and the direction of maximum radiation. It is common practice to orient an antenna
so that at least one of the principal plane patterns coincides with one of the geometrical
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Figure 2.17 Antenna beamwidth definitions. (a) Polar plot, linear scale. (b) Rectangular plot,
logarithmic scale.
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Figure 2.18 Normalized field patterns in the principal planes of a z-directed half-wave dipole
antenna. (a) E-plane, containing the electric field vector and the direction of maximum radiation
(figure-of-eight shape). (b) H -plane, containing the magnetic field vector and the direction of
maximum radiation (circle with unit radius).

principal planes [2]. As an example, Figure 2.18 shows the normalized field patterns in
the principal planes of a half-wave dipole antenna.

Note that for the z-directed half-wave dipole antenna, any plane ϕ = constant is an
E-plane.

2.2 Antenna Impedance and Bandwidth

Antennas will never be used as stand-alone devices; we will have to consider antennas
as being part of a system. Therefore, besides the radiation characteristics, we also need
to know the impedance characteristics.

When looking into the antenna, at the antenna terminals, we may regard the antenna
as a complex impedance ZA,

ZA = RA + jXA, (2.14)

where RA is the real or resistive part of the antenna impedance and XA is the imaginary
or reactive part of the antenna impedance. The real part accounts for the dissipation and
consists of two parts, the ohmic losses (which may be considerable in small antennas),
RL, and the (wanted) radiation losses, Rr ,

RA = RL + Rr. (2.15)

Rr is known as the antenna radiation resistance.
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Γ

Figure 2.19 Equivalent circuit for matching the lossless antenna to the generator.

The reactive part of the antenna impedance accounts for the reactive near-field region
of the antenna, where energy is being stored.

We assume for the moment that the reactive and ohmic loss part of the antenna
impedance may be neglected (ZA = Rr ) and that the antenna is connected to a generator
with (real) impedance Rg ,4 see Figure 2.19.

The (time average) power delivered by the generator to the antenna is given by

P = 1

2
� {

VA · I ∗} , (2.16)

where � {x} means the real part of the complex number x and I ∗ is the complex conjugate
of I .

Since we are dealing with real quantities only, the power delivered to the antenna is

P = 1

2

∣∣Vg

∣∣2
∣∣∣∣ Rg

Rg + Rr

∣∣∣∣
2 1

Rr

, (2.17)

where use is made of

VA = Rg

Rg + Rr

Vg, (2.18)

and

I ∗ = I = VA

Rr

. (2.19)

To find the value of the antenna impedance that results in a maximum power transfer
from the generator to the antenna, the following condition should be fulfilled:

∂P

∂Rr

= 0. (2.20)

4 The principle of the so-called conjugate matching should be explained – in the most general form – for complex
generator and antenna impedances, see for example [2] or [6]. For reasons of clarity, an explanation using real
impedances is chosen here.
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Upon substitution of equation (2.17) into equation (2.20), we finally find that the con-
dition for maximum power transfer results in

Rr = Rg, (2.21)

meaning that the radiation resistance should be equal to the generator resistance.
For the real generator and antenna impedance, this is also the condition for zero reflec-

tions at the antenna terminal. From (microwave) network theory, the reflection coefficient,

, looking into the antenna terminals, see Figure 2.19, is found to be


 = Rr − Rg

Rr + Rg

. (2.22)

When we design the antenna such that Rr = Rg , we see that the reflection becomes
zero.

The impedance of an antenna normally varies as a function of the frequency, and
therefore the matching also varies as a function of the frequency. This means that an
antenna will only operate efficiently within a restricted band of frequencies. The width
of this band of frequencies is called the bandwidth . Normally, at the center frequency
(middle of the frequency band) the impedance matching will be best, and going to lower
or higher frequencies results in a degradation of impedance matching up to a level where
matching has become unacceptably poor. These levels determine the boundaries of the
frequency band. Reflection coefficient levels of −10 dB (|
|2 ≤ 0.1) or −15 dB (|
|2 ≤
0.03) are commonly employed to determine the impedance bandwidth . For relatively
small bandwidth antennas, bandwidth is expressed in percentages of the center frequency
[2]. If f0 is the center frequency, fl is the lower boundary of the frequency band and fu

is the upper boundary of the frequency band, the bandwidth is given by:

BW = fu − fl

f0
· 100%. (2.23)

Bandwidths expressed in percentages of the center frequency are used up to a few
decades. For larger bandwidth antennas the ratio of the upper and lower frequency bound-
aries is used (such as 10 : 1 or 30 : 1) [2].

As well as the impedance bandwidth a radiation pattern bandwidth may also exist.
The two bandwidths need not be identical. It depends on the antenna and the application
which of the two bandwidths is more critical.

Example
The reflection coefficient of a certain antenna is measured as a function of frequency and
plotted (in dB) in Figure 2.20.

The reflection is at minimum at the center frequency, f0 = 11.3 GHz.
The −10 dB-bandwidth then follows from the lower frequency limit fl = 10.97 GHz

and upper frequency limit fu = 11.93 GHz, both read from the graph, and equation (2.23)

BW−10 dB = 11.93 − 10.97

11.3
· 100% = 8.50%. (2.24)
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Figure 2.20 Measured reflection as a function of frequency.

The −15 dB-bandwidth follows from the graph and equation (2.23)

BW−15 dB = 11.53 − 11.12

11.3
· 100% = 3.63%. (2.25)

2.3 Polarization

The electric field in the far-field region of an antenna will in general possess two spherical
coordinate components, Eϑ and Eϕ , see Figure 2.21.

In general, a phase difference will exist between these two field components. There-
fore, the electric field vector , as a function of time, t , will – for an arbitrary phase
difference – describe an ellipse in the ϑ ,ϕ-plane. The electric field and the antenna are
called elliptically polarized , see Figure 2.22(a).

z
Eϕ

y

x

Eϑ

ur

o

ϑ

ϕ

Figure 2.21 Electric field components Eϑ and Eϕ in the far-field region of an antenna placed at
the origin O. ur is the unit vector in the direction of wave propagation.
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Figure 2.22 Polarization states. (a) Elliptical polarization. (b) Circular polarization. (c) Linear
polarization.

When the phase difference is plus or minus 90◦ and the field components are equal in
amplitude, the ellipse becomes a circle and this is said to be circular polarization . The
antenna is said to be circularly polarized . When the phase difference is 0◦ or 180◦, the
ellipse becomes a line and this is referred to as linear polarization . The antenna is then
linearly polarized .

2.3.1 Elliptical Polarization

We can write the electric far-field as

E = Eϑ ûϑ + Eϕûϕ, (2.26)

where Eϑ is the complex amplitude of the ϑ-component of the electric field and Eϕ is the
complex amplitude of the ϕ-component of the electric field. The vectors ûϑ and ûϕ are
unit vectors in the ϑ- and ϕ-directions respectively. A brief overview of complex algebra
and vector mathematics will be given in the next chapter.

The complex amplitudes Eϑ and Eϕ can be written as,

Eϑ = |Eϑ | ej�ϑ , (2.27)

and

Eϕ = ∣∣Eϕ

∣∣ ej�ϕ , (2.28)

where �ϑ and �ϕ represent the phases of Eϑ and Eϕ , respectively.
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The electric field vector therefore may be written as

E = |Eϑ | ej�ϑ
(
ûϑ + ρûϕ

)
, (2.29)

where

ρ =
∣∣Eϕ

∣∣
|Eϑ |e

j(�ϕ−�ϑ). (2.30)

To trace the extremity of the electric field in the ϑ ,ϕ-plane, the real part of the electric
field needs to be taken

E = � {
Eej2π ft

}
= |Eϑ | {cos (2π ft + �ϑ) ûϑ + |ρ| cos

(
2π ft + �ϑ + �ρ

)
ûϕ

}
, (2.31)

where f is the used frequency, t is the time and

�ρ = �ϕ − �ϑ. (2.32)

Elimination of the time t results in a description of the trace of the extremity of the
electric field vector in the ϑ ,ϕ-plane. After some mathematical manipulations we get

(
Eϑ

|Eϑ |
)2

+
(

Eϕ∣∣Eϕ

∣∣
)2

− 2EϑEϕ

|Eϑ | ∣∣Eϕ

∣∣ cos
(
�ρ

) = sin2
(
�ρ

)
. (2.33)

Dividing this equation by sin2
(
�ρ

)
, results in[

1

|Eϑ |2 sin2
(
�ρ

)
]

E2
ϑ −

[
2 cos

(
�ρ

)
|Eϑ | ∣∣Eϕ

∣∣ sin2
(
�ρ

)
]

EϑEϕ +
[

1∣∣Eϕ

∣∣2
sin2

(
�ρ

)
]

E2
ϕ = 1,

(2.34)

which is the equation of an ellipse in the ϑ ,ϕ-plane, see Figure 2.23.

J

j

Ea

Eb

τ

Figure 2.23 Polarization ellipse.
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The tilt angle τ is given by

τ = arctan

(∣∣Eϕ

∣∣
|Eϑ |

)
. (2.35)

The amount of ellipticity is expressed as the ratio of the semimajor and semiminor axes
of the ellipse. This ratio is therefore known as the axial ratio and is usually expressed in
decibels. With reference to Figure 2.23

AR = 20 log

( |Ea|
|Eb|

)
. (2.36)

We will now show that circular polarization and linear polarization are special cases of
elliptical polarization.

2.3.2 Circular Polarization

For the special situation where |Eϑ | = ∣∣Eϕ

∣∣ = |E| and �ρ = ±π
2 , equation (2.34) simpli-

fies to (
Eϑ

|E|
)2

+
(

Eϕ

|E|
)2

= 1, (2.37)

which describes a circle in the ϑ ,ϕ-plane.
We may further distinguish between the situations �ρ = π

2 and �ρ = −π
2 . For the

former situation we get, upon substitution in equation (2.31)

EL = |E| [cos
(
2πf t ′

)
ûϑ − sin

(
2πf t ′

)
ûϕ

]
, (2.38)

where
2π ft′ = 2π ft + �ρ. (2.39)

Similarly, we get for the latter situation

ER = |E| [cos
(
2π ft′

)
ûϑ + sin

(
2π ft′

)
ûϕ

]
. (2.40)

For the first situation (�ρ = π
2 ) we have obtained an electric field vector that rotates

counterclockwise with time, looking in the direction of propagation. This situation is
depicted in Figure 2.22 and in Figure 2.24a. We call this circular polarization state left-
hand circular polarization (LHCP), following the direction of a left-handed screw.

For the second situation (�ρ = −π
2 ) we have obtained an electric field vector that

rotates clockwise with time, looking in the direction of propagation. This situation is
depicted in Figure 2.24(b). We call this circular polarization state right-hand circular
polarization (RHCP), following the direction of a right-handed screw.

2.3.3 Linear Polarization

For the special situation where �ρ = ±π and |Eϑ | not necessarily equal to
∣∣Eϕ

∣∣, equation
(2.34) simplifies to

Eϑ

|E| + Eϕ

|E| = 0, (2.41)
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Figure 2.24 Circular polarization. (a) Left-hand circular polarization (LHCP). (b) Right-hand
circular polarization (RHCP).

which describes a straight line in the ϑ ,ϕ-plane, see also Figure 2.22(c). The axial ratio
(AR) is infinite for a linearly polarized wave.

2.3.4 Axial Ratio

The axial ratio of a perfect circularly polarized wave is equal to unity. In practice, perfect
circular polarization is seldom encountered; a certain amount of ellipticity will always
exist. This ellipticity is expressed in the axial ratio, the ratio of the semimajor to the
semiminor axis lengths of the polarization ellipse. These lengths may be expressed in
terms of amplitudes of the LHCP and RHCP components. The elliptical polarization may
be seen as consisting of a combination of LHCP and RHCP polarization, the dominant
part of these two determining the direction of rotation of the elliptical polarization.

To show this we start by decomposing the electric field into LHCP and RHCP
components:

E = Eϑ ûϑ + Eϕûϕ = ELûL + ERûR, (2.42)

where

ûL = 1√
2

{
ûϑ + j ûϕ

}
, (2.43)

ûR = 1√
2

{
ûϑ − j ûϕ

}
, (2.44)

and

EL = 1√
2

{
Eϑ − jEϕ

}
, (2.45)

ER = 1√
2

{
Eϑ + jEϕ

}
. (2.46)
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Figure 2.25 Right-hand elliptically polarized wave, decomposed into RHCP and LHCP
components.

EL is the LHCP component of the wave, ER is the RHCP component of the wave.
The relation between an elliptically polarized wave and the two circular polarization
components is graphically represented in Figure 2.25.

In a predominantly RHCP wave (as shown in Figure 2.25), the RHCP component is
called the co-polarization and the LHCP component is called the cross-polarization . The
opposite is true for a predominantly LHCP wave.

The axial ratio is given by

AR = 20 log

∣∣∣∣ |EL| + |ER|
|EL| − |ER|

∣∣∣∣ . (2.47)

Circular polarization may be beneficial both in mobile satellite communications and in
radar applications.

At L-band frequencies (1–2 GHz), the ionosphere acts as a so-called Faraday rotator
[7], meaning that a linearly polarized wave undergoes a rotation upon passing through the
ionosphere. The use of circularly polarized transmit and receive antennas will eliminate
negative effects of this rotation (co-polarized signal attenuation and increase of cross-
polarized signal level).

In radar, circular polarization may be employed to ‘see through’ rain [8]. A right-hand
(left-hand) circularly polarized wave, incident upon a (near) spherical rain drop will be
reflected as a left-hand (right-hand) circularly polarized wave, to which the receiving
antenna is insensitive and thus this rain scatter will be rejected, while reflections from a
complicated structure, such as an aircraft, will possess circularly polarized components
with the right rotation direction to be accepted by the antenna. A linearly polarized wave,
reflected from a raindrop, would be accepted by the antenna since the antenna will accept
linearly polarized waves, 180◦ shifted in phase, equally as well as in-phase components.
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2.4 Antenna Effective Area and Vector Effective Length

Any antenna, be it a horn antenna or even a half-wave (wire) dipole antenna, may be
considered as an aperture antenna. This means that we may associate with every antenna
an aperture or equivalent area that – in the case of a receiving antenna – extracts energy
from an incident wave.

2.4.1 Effective Area

Let’s assume an antenna in receive situation5 with a plane wave incident upon it, having
a power density at the position of the antenna of S (Wm−2). We may characterize the
antenna by a maximum equivalent area or maximum equivalent aperture, Aem that is
defined as

Aem = PT

S
, (2.48)

where PT is the available power at the terminals of the antenna.
The effective area is, strictly speaking, a direction-dependent quantity, but if no direction

is specified – as in the above equation – the direction is assumed to be that of maximum
directivity. Furthermore, without further specification, we assume that the polarization of
the antenna and the impinging plane wave are lined up and that the antenna does not
introduce dielectric or ohmic losses. Under these conditions the effective area as defined
in the above equation is the maximum effective area .

Real aperture antennas, like electromagnetic horns, have effective apertures which are
smaller than the physical ones. For electromagnetic horns, the effective aperture is in the
order of 0.5 to 0.7 times the value of the physical aperture [9].

The maximum effective aperture of an antenna may be related to its directivity; this
relation is derived in Appendix A and results in

D = 4πAem

λ2
. (2.49)

We see that an increase in (effective) area leads to an increase in directivity. Antenna
beamwidth is therefore inversely proportional to aperture size.

The effective aperture, Ae, is related to the maximum effective aperture, Aem, through
the radiation efficiency, η, that accounts for ohmic and dielectric losses in the antenna

Ae = ηAem. (2.50)

With equation (2.13) we then find the following relation between effective aperture
and gain

G = 4πAe

λ2
. (2.51)

5 By virtue of reciprocity, which will be explained further on in this book, transmit and receive properties of
antennas are identical.
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Example
To show that the concept of effective area is a mathematical abstraction that is not
necessarily related to physical area, we will calculate the effective area of a short dipole
antenna of length l 
 λ and negligible diameter [2, 3].

The antenna and its equivalent circuit are shown in Figure 2.26. For educational reasons
we assume antenna and load impedances to be real. Furthermore, we assume the short
dipole to be lossless (which is not true in practice!).

The open circuit voltage of the short dipole antenna is

V = |Ei | l = Eil, (2.52)

where Ei is the amplitude of the incoming (lined up) linearly polarized electric field. The
maximum available power, Pa , realized when RL = RA, is given by

Pa = |V |2
8RA

= |Ei |2l2

8RA

, (2.53)

where the short dipole radiation resistance, RA may be calculated as [2, 3, 9], see also
Chapter 5.

RA = 80π2

(
l

λ

)2

, (2.54)

where λ is the wavelength used.
The power density in the far-field region of the source, S, may be calculated as

S = 1

2

∣∣Ei × H∗
i

∣∣ = 1

2

|Ei |2
Z0

, (2.55)

where Z0 is the intrinsic impedance of free space, which is equal to Z0 = 120π (�).
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1

Plane wave front

Direction of propagation

(a) (b)

IA

VA

RA

RL

V

Figure 2.26 Receiving short dipole antenna and equivalent circuit. (a) Antenna connected to
receiver with impedance RL. (b) Equivalent circuit.
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With equations (2.48), (2.53), (2.54) and (2.55), we then find for the maximum effective
area, Aem, of a short dipole (that has a negligible physical area!)

Aem = Pa

S
= 3

8π
λ2. (2.56)

An effective dimension associated with straight-wire antennas, that appeals more to our
intuition is the vector effective length .

2.4.2 Vector Effective Length

The vector effective length or vector effective height is used to determine the open circuit
voltage induced at the antenna terminals, when a plane wave is incident on the antenna.
When polarizations of plane wave and antenna are lined up, the effective length of a short
dipole antenna is identical to its physical length, l, see equation (2.52) in the example in
Section 2.4.1.6 In general, the effective length is a direction-dependent quantity [2].

le(ϑ, ϕ) = lϑ (ϑ, ϕ)ûϑ + lϕ(ϑ, ϕ)ûϕ. (2.57)

The open circuit voltage of an antenna is then obtained by projecting the incident
electric field vector on the complex conjugate of the vector effective length [3]

Voc = Ei · l∗e , (2.58)

where the complex conjugate is used to correct for the fact that the vector effective length
is associated with the transmitting case, while the open circuit voltage is obtained in the
receiving case.

The incident field vector – radiated by a transmitting antenna – may be expressed in
terms of vector effective length according to [2, 10] as

Ei = −jZ0
kIin

4πr
lee−jkr , (2.59)

where Iin is the current at the input terminals of the transmitting antenna, r is the distance
between transmitting and receiving antenna and k = 2π/λ.

Example
The radiated electric far-field of a vertically oriented half-wave dipole antenna is given
by [3]

Ei = jZ0
kIin

4πr

(
λ

π

)
e−jkr sin(ϑ)

cos
[(

π
2

)
cos(ϑ)

]
sin2(ϑ)

uϑ . (2.60)

Substitution of equation (2.60) for ϑ = π
2 into equation (2.59) gives for the effective

length of a half-wave dipole antenna

|le| = lϑ = λ

π
= 0.32λ. (2.61)

6 For the short dipole in the example it was implicitly assumed that the current over the short dipole antenna is
uniform. For any current distribution other than uniform, physical and effective length are not identical anymore.
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The effective length of a half-wave dipole antenna is smaller than its physical length,
just as we have seen that the effective aperture of an electromagnetic horn antenna is
smaller than its physical size.

The concept of effective aperture or length is based on the principle that an imaginary
aperture or wire antenna is conceived that intercepts the same amount of power as the
original antenna does, but it does so uniformly , unlike the original antenna.7 Only when
the original antenna is very small, does the power interception approximately take place
uniformly and effective and physical dimensions get close to one another. The concept of
effective aperture is not restricted to physical aperture antennas and, likewise, the concept
of effective length may also be applied to non-wire (aperture) antennas.

2.5 Radio Equation

As stated before, an antenna is never used as a stand-alone component, but will always
be part of a communication or radar system. In a communication system, we have to deal
with at least two antennas: a transmitting antenna and a receiving antenna. We assume
that both antennas are lined up in terms of polarization and maximum directivity and that
they are positioned in each other’s far-field regions, see Figure 2.27.

The gain of the transmitting antenna is GT , the gain of the receiving antenna is GR .
The power density S at distance R from the transmitting antenna is

S = GT

PT

4πR2
, (2.62)

where PT is the input power at the terminals of the transmitting antenna. The factor
1/(4πR2) accounts for the spherical spreading of the energy. Since the transmit antenna
is non-isotropic, this factor is multiplied by the gain of the antenna.

Transmitter Receiver

R

GT GR

Figure 2.27 Communication system consisting of a transmitter having an antenna with gain GT

and a receiver having an antenna with gain GR . The antennas are displaced a distance R and assumed
to be in each other’s far-field regions and lined up with respect to polarization and directivity.

7 We have assumed that the half-wave dipole has a sinusoidal current distribution over the wire. For the determi-
nation of the effective length, a constant current is assumed. Therefore, the effective length (0.32λ) is shorter than
the physical length (0.50λ).
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The amount of power intercepted by the receiving antenna, PR , is this power density
multiplied by the effective area of the receive antenna, AeR . This effective area is directly
related to the gain of the receive antenna,

PR = SAeR = GT

PT

4πR2
GR

λ2

4π
. (2.63)

After rearranging the terms of this equation, we may relate the power received at the
terminals of the receive antenna, PR , to the power delivered at the terminals of the transmit
antenna, PT , as

PR

PT

=
(

λ

4πR

)2

GRGT . (2.64)

This equation is known as the radio equation or the Friis transmission equation . The
term (λ/(4πR))2 is known as the free space loss factor .

Example
Assume a broadcasting system, operating at 100 MHz, employing a half-wave dipole
antenna, having a gain of 2.15 dBi.8 The power accepted by the transmit antenna is 1 kW.

The minimum required power delivered by the receiving antenna is 1 nW. When the
maximum range is 500 km, what should be the minimum gain of the receiving antenna?

The required gain is given by

GR = 16π2R2PR

λ2PT GT

. (2.65)

The wavelength is given by λ = c0/f , where c0 is the velocity of light in vacuum
(c0 ≈ 3 · 108 ms−1) and f is the frequency. The wavelength therefore is 3.0 m. The gain
of the transmitting antenna is GT = 102.15/10 = 1.64.9 The desired minimum gain is then
found to be

GR = 16 · 9.87 · 2.5 · 1011 · 10−9

9 · 103 · 1.64
= 2.67, (2.66)

or GR = 10 log(2.67) = 4.27 dBi .
Mind that the equation is solved for the situation where both antennas are lined up with

respect to gain and polarization.

Example
Consider a mobile communication system consisting of two identical transmitter-receiver
sets operating at 1 GHz. The same half-wave dipole antenna is used both for transmis-
sion and for reception. GT = GR = G = 2.15 dBi. The power delivered to the antenna
in transmission is 1 W. The minimum power at the antenna terminals in reception is
−65 dBm. Find the maximum allowable distance, R, between the two sets.

8 The units of dBi refer to a gain relative to an isotropic radiator. Another unit sometimes encountered is the dBd,
the gain relative to an elementary dipole radiator (2.15 dBi = 0.0 dBd).
9 The product PT GT is known as the effective isotropic radiated power (EIRP). The EIRP is the power intensity
that could have been obtained from an isotropic radiator if it had an input power, Pin equal to the EIRP.
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The maximum allowable distance is given by

R = λ

4π
G

√
PT

PR

. (2.67)

The wavelength is c0/f = 3 · 108/109 = 0.30 m. G = 1.64. PT = 1 W. The minimum
power at reception is expressed in dBm, meaning decibels with respect to 1mW. Therefore,
PR = 10−65/10 mW = 10−65/10 · 10−3 W = 3.16 · 10−10 W. The maximum distance is then
found to be

R = 0.30

12.57
1.64

√
1

3.16 · 10−10
= 2.20 km. (2.68)

2.6 Radar Equation

A radar system is very much like the communication system described in the previous
section. The difference is that instead of a direct link, the electromagnetic waves, emitted
by the transmitter T in Figure 2.28(a), now reach the receiver, R, via a reflection against
a target.

The power density incident on the target, Si , is given by

Si = GT

PT

4πR2
1

, (2.69)

T R
T/R

G

GT

GR

(a) (b)

R1
R2

R

Figure 2.28 Radar system (a) Bistatic radar. The transmitter is connected to an antenna with gain
GT and is at a distance R1 from the reflecting target. The receiver has an antenna with gain GR

and is at a distance R2 from the target. (b) Monostatic radar. The same antenna, having gain G, is
used for transmission and reception. The distance to the target is R. The target is assumed to be in
each antenna’s far-field region.
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where GT is the gain of the transmit antenna, PT is the power at the input of the transmit
antenna and R1 is the distance between transmit antenna and target. It is implicitly assumed
that the beam of the transmit antenna is directed to the target.

The power intercepted by the target, Pi , is proportional to the power density, Si and is
given by

Pi = σSi, (2.70)

where σ (m2) is known as the radar cross-section (RCS) of the target.

2.6.1 Radar Cross-Section

The radar cross-section of a target is the equivalent area intercepting that amount of power
that, when scattered equally in all directions, produces an echo at the radar equal to that
coming from the target [8].

There is in general not a simple rule, relating the physical size of a target to its radar
cross-section, although, in general, larger targets exhibit larger RCSs. Table 2.1 [2, 8]
gives an overview of some typical RCS values.

We now return to the radar equation.
The power density at the position of the receiver after scattering from the target, Ss is

given by

Ss = Pi

4πR2
2

= σGT PT

(4π)2R2
1R

2
2

. (2.71)

Table 2.1 Typical RCS values

Object RCS (m2)

Conventional, winged missile 0.5
Small fighter or 4-passenger jet 2
Large fighter 6
Medium bomber or medium jet airliner 20
Large bomber or large jet airliner 40
Jumbo jet 100

Small pleasure boat 2
Cabin cruiser 10

Pickup truck 200
Automobile 100
Bicycle 2

Man 1
Bird 0.01
Insect 0.00001
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The power available at the receiver, PR , is

PR = AerSs, (2.72)

where Aer is the effective aperture of the receiving antenna. With use of equation (2.51),
we find

PR = PT

σGT GRλ2

(4π)3R2
1R

2
2

. (2.73)

This equation, relating received and transmitted power, is known as the radar equation .
The setup with a separate transmit and receive antenna, physically displaced, see Figure

2.28(a), is called bistatic radar . The more common monostatic radar , see Figure 2.28(b),
uses the same antenna both for transmission and reception. The consequences for the
radar equation are that GT = GR = G and R1 = R2 = R, leading to

PR = PT

σG2λ2

(4π)3R4
. (2.74)

Example
It is necessary to detect a target with a RCS of 1m2 at a range of 150 km. A monostatic
radar is used. The gain of the antenna employed is 40 dB at a frequency of 3 GHz. The
minimum power at the terminals of the antenna in receiving mode is −100 dBm.

What is the transmitting power needed and what is the size of the effective antenna
aperture?

The transmitting power is given by

PT = PR

(4π)3R4

σG2λ2
. (2.75)

G = 1040/10 = 104 and λ = 3 · 108/3 · 109 = 10−1 m. PR = 10−100/10 mW = 10−13 W.
The transmitted power is then found to be

PT = 10−13 1984.40
(
150 · 103

)4

108 · 10−2
W = 100.46 kW. (2.76)

The effective aperture is

Ae = Gλ2

4π
= 104 · 10−2

12.57
m2 = 7.96 m2. (2.77)

Example
Answer the same questions if the frequency is now 1 GHz. We assume that the antenna
is replaced by an antenna that has a gain of 40 dBi at 1 GHz.

The wavelength has changed to λ = 0.30 m. The transmitted power is now found to be

PT = 10−13 1984.40
(
150 · 103

)4

108 · 0.302
W = 11.16 kW. (2.78)
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The effective aperture of the antenna is

Ae = Gλ2

4π
= 104 · 0.302

12.57
m2 = 71.60 m2. (2.79)

Thus, at a lower frequency we may detect targets using less power, but we need
larger antennas.

2.7 Problems

2.1 What is meant with the ‘far field’ of an antenna?

2.2 .(a) A rectangular aperture has dimensions 30 cm × 15 cm and is operated at a fre-
quency of 10 GHz. At what distance does the far field start?

(b) A parabolic (dish) reflector has a diameter D = 80 cm and a focal distance F =
13 cm. A circular aperture (horn antenna) is placed at the focal distance. We
assume that the reflector is positioned in the far-field of the horn antenna. What
is the maximum diameter of this horn antenna if the frequency is 1.5 GHz?

2.3 In Figure 2.29 the normalized radiation pattern cut of a certain antenna is shown.
Determine, from the figure, the half power beamwidth of this cut.

2.4 .(a) The radiation efficiency of an antenna is 0.95 and the gain is 3.0 dB. What is the
directivity?

(b) Is the gain always higher or always lower than the directivity, and why?

2.5 .(a) The Mars Rover that landed on the planet Mars in 2003 is equipped with an X-
band (8–12 GHz) high-gain antenna. The gain is 25 dBi at 8.4 GHz. The minimum
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Figure 2.29 Normalized radiation pattern cut of a certain antenna.
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required power level at reception is –156 dBm. The distance to Earth is 56 million
kilometers. What is the EIRP needed on Earth to transmit directly to the Rover?

(b) If the effective aperture size of the transmit antenna is 1 m2, what is the trans-
mitted power?

2.6 A GSM-900 (900 MHz) base station receiver employs an antenna with a gain of
18 dBi and has a sensitivity of –50 dBm. When a GSM phone is transmitting at 0.1 W
employing an antenna having a gain of 2.15 dBi, what is the maximum reachable,
line-of-sight distance between phone and base station?

2.7 A monostatic radar is used to detect an unknown flying object. From time measure-
ments, the distance is found to be 100 km. The transmit power is 100 kW, the antenna
gain is 30 dBi. The received power is measured to be 10−13 W. What is the radar cross
section of the unknown object and what might it be?

2.8 We want to use a radar to detect birds at a distance up to 100 m. We will use an
antenna having a gain of 18 dBi and a receiver having a sensitivity of −80 dBm at
10 GHz. How much power must we use?
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3
Vector Analysis

Scalars are defined by an amplitude only, for example temperature, charge. Vectors, for example
forces, are defined not only by an amplitude but also by a direction. This means that simple
arithmetic operations that can be applied for scalars, like addition, subtraction, multiplication and
differentiation, have slightly more complicated counterparts for vectors. In this chapter we will
briefly explain these operations and we will discuss the gradient-, divergence- and curl -operators.

A scalar is represented in print as a normal, though often italic, letter (e.g., charge q). A
vector is represented in print with a bold face letter (e.g., electric field E). Since bold
face letters are difficult to reproduce in writing, the convention of writing a small arrow
over the letter is adapted. This arrow may be simplified to a half arrow or a line. Also a
line underneath the letter may be used to represent a vector. Thus, the vector a may be
represented as

a = �a = ā = a. (3.1)

The amplitude of this vector, |a|, is a scalar, |a| = a.
For a vector a in a Cartesian three-dimensional space, the relation between amplitude

and direction (ϑ, ϕ), see Figure 3.1, is given by

a = a sin(ϑ) cos(ϕ)ûx + a sin(ϑ) sin(ϕ)ûy + a cos(ϑ)ûz. (3.2)

Here, ûx , ûy and ûz are unit vectors in the x -, y- and z -directions, respectively. Unit
vectors have a length 1 and are mutually orthogonal. Customarily they are indicated with
a ‘hat’.

Having clarified notational issues, we are now ready for discussing vector analysis.

3.1 Addition and Subtraction

We start with the addition of two vectors a and b. Therefore we construct a parallelogram
from the vectors a and b as shown in Figure 3.2 and find the sum of the two vectors a + b
as the vector starting at the origin and following the long diagonal of the parallelogram.

Antenna Theory and Applications, First Edition. Hubregt J. Visser.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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z

y

x

a

azûz

j

J

axûx

ayûyûy

ûz

ûx

Figure 3.1 Three-dimensional vector a having amplitude a and direction (ϑ ,ϕ).

O

a

b
a + b

Figure 3.2 Addition of vectors a and b.

For the subtraction a − b we apply the same method. First we obtain the vector −b as
the image of b upon reflection through the origin. Then, a − b = a + (−b), see Figure 3.3.

3.2 Products

For the scalar quantities a and b, only the product a · b exists. For vectors, however, we
have two possibilities: The so-called scalar product or dot product an the vector product
or cross product .

3.2.1 Scalar Product or Dot Product

The dot product of two vectors results in a scalar. The result thus only has an amplitude
and no direction. The dot product of two vectors a and b is obtained by the orthogonal
projection of one of the vectors onto the other one, see Figure 3.4.
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O

a

b

a − b

−b

Figure 3.3 Subtraction of vectors a and b.

a

a

b

Figure 3.4 Obtaining the dot product of the vectors a and b that are positioned with respect to
each other at an angle α.

The dot product a · b is

a · b = |a|.|b|. cos(α) = a.b. cos(α). (3.3)

Note that for α = π/2 the dot product is 0. It does not matter which vector is projected
onto which vector, the dot product is commutative:

a · b = b · a. (3.4)

3.2.2 Vector Product or Cross Product

The result of the cross product of two vectors a and b is a vector again, thus hav-
ing amplitude and direction. The direction is that of a right-hand screw, see Figure 3.5.
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a × b

a

b

a

|a||b|sin(a)

ûn

Figure 3.5 Obtaining the cross product of the vectors a and b that are positioned with respect to
each other at an angle α.

The amplitude is equal to the surface of the parallelogram constructed from the two
vectors a and b.

The cross product a × b is determined by

a × b = |a|.|b|. sin(α)ûn, (3.5)

where ûn is the so-called normal (length 1 ) on the surface defined by a and b. In contrast
to the dot product, the order of vectors in the cross product does matter, the cross product
is not commutative:

a × b = −b × a. (3.6)

3.2.3 Triple Product

With the dot product and the cross product defined in the previous sections we now have
two possibilities for forming a triple product, (a × b) · c and (a × b) × c.

3.2.3.1 (a × b) · c

We start with determining the cross product of the vectors a and b. Thereto, we decompose
the vectors into their Cartesian components:

a = ax ûx + ay ûy + azûz,

b = bx ûx + by ûy + bzûz,
(3.7)

and apply the determinant representation for determining the cross product:

(a × b) =
∣∣∣∣∣∣

ûx ûy ûz

ax ay az

bx by bz

∣∣∣∣∣∣ = (aybz − byaz)ûx − (axbz − bxaz)ûy + (axby − bxay)ûz. (3.8)
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Next we take the dot product with c = cx ûx + cy ûy + czûz and finally obtain

(a × b) · c = (aybz − byaz)cx − (axbz − bxaz)cy + (axby − bxay)cz. (3.9)

3.2.3.2 (a × b) × c

Using equation (3.8) and the determinant representation we obtain through laborious but
straightforward calculations and a regrouping of common terms:

(a × b) × c =
∣∣∣∣∣∣

ûx ûy ûz

aybz − byaz azbx − bzax axby − bxay

cx cy cz

∣∣∣∣∣∣
= {

(azbx − bzax)cz − (axby − bxay)cy

}
ûx

− {
(aybz − byaz)cz − (axby − bxay)cx

}
ûy

+ {
(aybz − byaz)cy − (azbx − bzax)cx

}
ûz

= (a · c)b − (b · c)a. (3.10)

3.3 Differentiation

Suppose that a vector a is a function of the (scalar) parameter t :

a = a(t). (3.11)

For a small change δt , the vector changes into, see Figure 3.6,

a(t + δt) = a + δa. (3.12)

We now define the derivative of vector a with respect to t in the usual way

da
dt

= lim
δt→0

δa
δt

. (3.13)

The derivative with respect to t of the product of two scalar functions a(t) and b(t) is
found with the aid of the chain rule

d

dt
(ab) = da

dt
b + a

db

dt
. (3.14)

To apply the chain rule to the dot product of two vectors a(t) and b(t), we first write
the dot product as in equation (3.3) a · b = ab cos(α), where α is the angle between the
two vectors. Application of the chain rule then results in

d

dt
(a · b) = da

dt
b cos(α) + a

db

dt
cos(α). (3.15)
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a(t)

da

a(t + dt) = a + da

Figure 3.6 Change of vector a(t) into vector a(t + δt) = a + δa.

As δt approaches zero, the limit of δa and the limit of δb will also approach zero, and
therefore da

dt
and db

dt
will be directed along a and b, respectively. Equation (3.15) then

becomes

d

dt
(a · b) = da

dt
· b + a · db

dt
. (3.16)

In a similar way we find that

d

dt
(a × b) = da

dt
× b + a × db

dt
. (3.17)

In discussing the product of two vectors, we found that it was necessary to introduce
two types of product. Now, it is necessary to introduce three types of differentiation.
These types are: gradient , divergence and curl .

3.3.1 Gradient

The gradient works on a scalar quantity (e.g., temperature) and identifies the greatest rate
of increase of this scalar quantity. The gradient therefore has an amplitude and direction.
The gradient is a vector quantity of a scalar field.

The gradient of the scalar φ, in Cartesian coordinates, is given by

grad(φ) = δφ

δx
ûx + δφ

δy
ûy + δφ

δz
ûz. (3.18)

To determine the spatial variation of a scalar function in an arbitrarily chosen direction,
it suffices to determine the component of the gradient in that direction.

For a shorthand notation we will make use of a so-called operator notation . To start
with, we write equation (3.18) as

grad(φ) =
(

δ

δx
ûx + δ

δy
ûy + δ

δz
ûz

)
φ. (3.19)
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It is important to understand that in equation (3.19) we have NOT written a multipli-
cation. Instead, the equation means that the operation indicated between the parentheses
acts upon φ. How it acts on φ is defined in equation (3.18).

Next, we write the operator, that is the term between parentheses in equation (3.19), in
shorthand

∇ ≡ δ

δx
ûx + δ

δy
ûy + δ

δz
ûz, (3.20)

and use this to write equation (3.18) in shorthand, using the nabla-operator , as

grad(φ) = ∇φ, (3.21)

where the nabla-operator is given by equation (3.20) and the operation is defined by
equation (3.18).

3.3.2 Divergence

The divergence (a scalar quantity) is the outward directed flux, per unit of volume, acting
on a point at a vector field.

To explain this, let’s assume a vector field a and a point P in this field. Next, consider
a small volume δV around P . The (closed) surface of this volume we call S. The total
flux that leaves the volume is given by∫∫

S

a · dS, (3.22)

where dS is perpendicular to S, see Figure 3.7.
The flux per unit of volume is now given by∫∫

S
a · dS

δV
. (3.23)

P

dS

S

dV

Figure 3.7 Volume δV having closed surface S. δS is perpendicular to S.
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z

ay ay + (∂ay /∂y)dy

dy
dx

dz

x

y

Figure 3.8 Rectangular volume with sides δx, δy and δz.

From this equation follows the definition of the divergence in the point P

div(a) = lim
δV →0

∫∫
S

a · dS

δV
. (3.24)

To get a more practical equation, we consider – in a Cartesian coordinate system – a
rectangular volume having sides δx, δy and δz, see Figure 3.8.

The net flux in the y-direction, see also Figure 3.8, is now given by(
ay + ∂ay

∂y
δy

)
δxδz − ayδxδz = ∂ay

∂y
δxδyδz. (3.25)

In a similar way we find for the net flux in the x-direction and for the net flux in the
z-direction (

ax + ∂ax

∂x
δx

)
δyδz − axδyδz = ∂ax

∂x
δxδyδz, (3.26)

(
az + ∂az

∂z
δz

)
δxδy − azδxδy = ∂az

∂z
δxδyδz. (3.27)

Then, the net flux out of the volume is given by(
∂ax

∂x
+ ∂ay

∂y
+ ∂az

∂z

)
δxδyδz, (3.28)

and by applying equation (3.24), the divergence is given by

div(a) = lim
δxδyδz→0

(
∂ax

∂x
+ ∂ay

∂y
+ ∂az

∂z

)
δxδyδz

δxδyδz
, (3.29)
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or
div(a) = ∂ax

∂x
+ ∂ay

∂y
+ ∂az

∂z
. (3.30)

This equation may also be written in shorthand using the operator notation. Again we
use the nabla-operator, see equation (3.20), to obtain

∇ · a =
(

∂

∂x
ûx + ∂

∂y
ûy + ∂

∂z
ûz

)
· (ax ûx + ay ûy + azûz) = ∂ax

∂x
+ ∂ay

∂y
+ ∂az

∂z
, (3.31)

and so
div(a) = ∇ · a. (3.32)

3.3.2.1 Gradient and Divergence Calculus

Now that the gradient and divergence have been explained, it is useful to derive some
calculation rules involving the gradient and divergence. We need to keep in mind that the
gradient operates on a scalar and results in a vector and that the divergence operates on
a vector and results in a scalar.

We start by repeating the operator notation

grad(φ) = ∇φ

div(a) = ∇ · a,
(3.33)

where
∇ ≡ ∂

∂x
ûx + ∂

∂y
ûy + ∂

∂z
ûz. (3.34)

Now we can calculate the divergence of the product of a scalar φ and a vector a

∇ · (φa) =
(

∂

∂x
ûx + ∂

∂y
ûy + ∂

∂z
ûz

)
· (φax ûx + φay ûy + φazûz)

= ∂(φax)

∂x
+ ∂(φay)

∂y
+ ∂(φaz)

∂z

= ax

∂φ

∂x
+ φ

∂ax

∂x
+ ay

∂φ

∂y
+ φ

∂ay

∂y
+ az

∂φ

∂z
+ φ

∂az

∂z

= a · ∇φ + φ∇ · a, (3.35)

or
div(φa) = a · grad(φ) + φdiv(a). (3.36)

3.3.3 Curl

The curl of a vector may be regarded as the generalization of current density. This
statement needs an explanation.

Let us consider a thin wire, carrying a current I, see Figure 3.9.
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I

H

Figure 3.9 A current I induces a magnetic field H.

H

J

C

S

Figure 3.10 A current density J induces a magnetic field H.

The magnetic field, induced by the current, satisfies∮
H · dl = I, (3.37)

where dl is the integration variable that is tangent to the loop around the current. We now
generalize to a current density J on a wire with cross section S, see Figure 3.10.∮

H · dl =
∫∫

S

J · dS. (3.38)

We define the curl through equation (3.38), a generalization of current density,∮
a · dl =

∫∫
S

curl(a) · dS. (3.39)
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From this equation follows the definition of the curl

curl(a) = lim
δS→0

∮
a · dl
δS

, (3.40)

where δS is an infinitesimal part of the surface S. The curl is perpendicular to the contour
C. The contour integral in the right-hand part of equation (3.40) explains the name of the
operation: curl .

Just as with the definition of the divergence, equation (3.24),1 this equation is not very
well suited for practical applications. For a more practical formulation we consider, in a
Cartesian coordinate system, a rectangular contour in the xz-plane, having sides δx and
δz, see Figure 3.11. A vector a starting from the origin of the coordinate system has
components ax , ay and az.

Following the contour, starting at the origin of the coordinate system in the direction
of the block arrows, we encounter the following contributions to the contour integral

azδz(
ax + ∂ax

∂z
δz

)
δx

−
(

az + ∂az

∂x
δx

)
δz

−axδx (3.41)

az

dz
dx

ay
ax

z

x

y

ûz

ûy

ûx

Figure 3.11 A rectangular contour in the xz-plane having sides δx and δz.

1 Just as the curl may be considered to be a generalization of current density, the divergence may be considered
as a generalization of charge density.
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The integral over the contour shown in Figure 3.11 thus amounts to∮
a · dl =

(
∂ax

∂z
− ∂az

∂x

)
δxδz, (3.42)

and thus the y-component of the curl of vector a is

(curl(a))y = ∂ax

∂z
− ∂az

∂x
. (3.43)

In a similar way, by constructing contours in the yz-plane and in the x,y-plane, we
find the x- and z-components, respectively, of the curl of vector a:

(curl(a))x = ∂az

∂y
− ∂ay

∂z
, (3.44)

(curl(a))z = ∂ay

∂x
− ∂ax

∂y
. (3.45)

The curl of vector a may be written, in operator notation, as

curl(a) =

∣∣∣∣∣∣∣∣

ûx ûy ûz

∂

∂x

∂

∂y

∂

∂z
ax ay az

∣∣∣∣∣∣∣∣
=

(
∂

∂x
ûx + ∂

∂y
ûy + ∂

∂z
ûz

)
× a. (3.46)

In equation (3.46) we recognize the nabla-operator, equation (3.20), so that we may
write the curl of vector a in shorthand as

curl(a) = ∇ × a. (3.47)

3.3.3.1 Gradient, Divergence and Curl Calculus

Now that, next to the gradient and the divergence, the curl has also been explained, we
may derive calculation rules for cascaded operations. We repeat that the gradient operates
on a scalar and results in a vector, that the divergence operates on a vector and results in
a scalar and that the curl operates on a vector and results in a vector.

The expressions for cascaded operations are found by consequently applying

∇ ≡ ∂

∂x
ûx + ∂

∂y
ûy + ∂

∂z
ûz

grad(φ) = ∇φ = ∂φ

∂x
ûx + ∂φ

∂y
ûy + ∂φ

∂z
ûz

div(a) = ∇ · a = ∂ax

∂x
+ ∂ay

∂y
+ ∂az

∂z
(3.48)

curl(a) = ∇ × a =

∣∣∣∣∣∣∣∣

ûx ûy ûz

∂

∂x

∂

∂y

∂

∂z
ax ay az

∣∣∣∣∣∣∣∣
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Using equations (3.48), we find

div (curl(a)) = ∇ · ∇ × a = 0, (3.49)

curl (grad(φ)) = ∇ × ∇φ = 0, (3.50)

curl (curl(a)) = ∇ × ∇ × a = ∇(∇ · a) − ∇2a, (3.51)

curl(φa) = ∇ × (φa) = (∇φ) × a + φ(∇ × a) = grad(φ) × a + φcurl(a). (3.52)

Useful vector formulas are given in Appendix B.

3.4 Problems

3.1 Calculate the dot product a · b if
(a) a = ûx + 2ûy and b = 3ûx + 4ûy ,
(b) a = 3ûx + 5ûy and b = −7ûx + 12ûy ,
(c) a = −ûx − ûy and b = −ûx + ûy .

3.2 Prove that |a| = |b|, if (a + b) and (a − b) are perpendicular.

3.3 Find the angle between the vectors a and b if
(a) a = ûx + √

3ûy and b = √
3ûx + ûy ,

(b) a = 3ûx + 7ûy and b = −2ûx + 5ûy ,
(c) a = ûx + 2ûy and b = 3ûx + ûy .

3.4 Calculate the cross product a × b if
(a) a = 4ûx − 4ûy − 3ûz and b = ûx ,
(b) a = 4ûx − 4ûy − 3ûz and b = ûx − ûy ,
(c) a = ûx + ûy − 4ûz and b = 2ûx − ûy + 3ûz.

3.5 If φ = 2xy2 + x2z3, what is ∇φ?

3.6 If φ = x2y + 2xy, what is the gradient at the point (x, y, z) = (2, 1, 1)?

3.7 Find the gradient of f (x, y, z) = xyz.

3.8 Find the gradient of f (x, y, z) = (x − 1)2 − y2 + (z + 3)2.

3.9 If f(x, y, z) = xyzûx + 3y2zûy − 2x2yzûz, find the divergence of f(x, y, z).

3.10 Find the divergence of f = 2x2zûx − 3xz2ûy + xy2zûz.

3.11 Find the divergence of f = xûx + yûy + zûz.

3.12 If r = xûx + yûy + zûz, find the divergence of f = r
|r|3 .

3.13 Calculate the curl of f(x, y, z) = 3x2yûx + 2xy2zûy − xyz3ûz.

3.14 Calculate the curl of the gradient of φ, if φ = 4xy2z3.

3.15 Calculate the curl of f(x, y, z) = x2z3ûx + x3yzûy − y2z4ûz.



4
Radiated Fields

To be able to calculate the radiated fields of an antenna, we start by calculating the radiated fields of
an arbitrary current density. In the next chapter we will make an assessment of this current density
for a specific antenna, that is the thin-wire dipole antenna. Then, the radiated fields will be a special
case of the general situation described in this chapter. The origin of the calculations is the Maxwell
equations, wherein current density and charge density are the sources. By introducing the magnetic
vector potential and the Lorentz gauge, we will be able to calculate the radiated fields, based on
the current density only.

4.1 Maxwell Equations

The Maxwell equations, in the time-domain, are given by:

∇ × E(r, t) = −∂B(r, t)
∂t

, (4.1)

∇ × H (r, t) = ∂D(r, t)
∂t

+ J e(r, t), (4.2)

∇ · B(r, t) = 0, (4.3)

∇ · D(r, t) = ρe(r, t). (4.4)

In these equations, E is the electric field
[
Vm−1

]
, D is the dielectric displacement[

Cm−2
]
, B is the magnetic induction

[
Wbm−2

]
, H is the magnetic field

[
Am−1

]
, ρe is the

electric charge density
[
Cm−3

]
and J e is the electric current density

[
Am−2

]
.

For electromagnetic waves propagating in free space

D(r, t) = ε0E(r, t), (4.5)

B(r, t) = μ0H (r, t), (4.6)

where ε0 is the free space permittivity, ε0 ≈ 8.854 × 10−12 [Fm−1] and μ0 is the free
space permeability, μ0 = 4π × 10−7 [Hm−1].
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In electromagnetics we work with time-harmonic fields, meaning that

E (r, t) = � {
E(r)ejωt

}
, (4.7)

H (r, t) = � {
H(r)ejωt

}
, (4.8)

B(r, t) = � {
B(r)ejωt

}
, (4.9)

D(r, t) = � {
D(r)ejωt

}
, (4.10)

where ω is the angular frequency, ω = 2πf , f being the frequency. For complex algebra,
see Appendix C.

Substituting equations (4.7)–(4.10) and equations (4.5) and (4.6) in equations
(4.1)–(4.4) results in

∇ × E(r) = −jωμ0H(r), (4.11)

∇ × H(r) = jωε0E(r) + Je(r), (4.12)

∇ · H(r) = 0, (4.13)

∇ · E(r) = ρe(r)
ε0

. (4.14)

The general problem now is to find the complex fields E(r) and H(r), given the sources
Je(r) and ρe(r). Once these complex fields are found, the physical fields are obtained
through equations (4.7) and (4.8).

If the source distributions are known, the complex field may be obtained through
integrating, that is adding contributions, over the source volume. For this method it is
necessary, however, to know both the electric current density Je(r) and the electric charge
density ρe(r). By using a so-called vector potential , we will be able to relate the electric
current density to the electric charge density and then calculate the radiated fields using
the electric current density only. In general, it will be possible to assess the electric current
density, as we will see in this and the subsequent chapters. For the electric charge density
an assessment is not always obvious.

4.2 Vector Potential

From equation (4.13), ∇ · H = 0,1 and the identity (3.49), ∇ · (∇ × Ae) = 0, it follows
that we may write the magnetic field as

H = 1

μ0
∇ × Ae, (4.15)

where Ae is called the magnetic vector potential .
Substituting equation (4.15) in equation (4.11) gives

∇ × E = −jω∇ × Ae − ∇ × ∇φe. (4.16)

1 From here on we omit writing down the r-dependences explicitly.
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The addition of the last term in the right-hand-side of equation (4.16) is allowed since,
from equation (3.50), ∇ × ∇φe = 0. φe is an arbitrary electric scalar potential. The electric
field may now be written as

E = −jωAe − ∇φe. (4.17)

Substitution of equations (4.15) and (4.17) in equation (4.12) results in

∇ × ∇ × Ae = k2
0Ae − jωε0μ0∇φe + μ0Je, (4.18)

where k0 = ω
√

ε0μ0 is the free-space wave number.
Using the vector identity (3.51), ∇ × ∇ × Ae = ∇ (∇ · Ae) − ∇2Ae, the equation

becomes

∇2Ae + k2
0Ae = ∇ (∇ · Ae) + jωε0μ0∇φe − μ0Je. (4.19)

In this equation we may already start to recognize a Helmholtz equation. We may
simplify this equation by defining the scalar potential φe, which is allowed since we
introduced this scalar potential as being arbitrary. By choosing jωε0μ0φe = −∇ · Ae or

φe = − 1

jωε0μ0
∇ · Ae, (4.20)

equation (4.19) reduces to

∇2Ae + k2
0Ae = −μ0Je, (4.21)

a vectorial, inhomogeneous Helmholtz equation, relating the source Je to the vector poten-
tial Ae. The particular choice for the scalar potential in equation (4.20) is known as the
Lorentz gauge or Lorentz condition .

The source ρe may be related to the scalar potential φe by substituting equation (4.17)
in equation (4.14):

∇ · E = −jω∇ · Ae − ∇2φe, (4.22)

and applying the Lorentz gauge ∇ · Ae = −jωε0μ0φe, leading to

∇2φe + k2
0φe = −ρe

ε0
. (4.23)

This is a scalar, inhomogeneous Helmholtz equation relating the source ρe to the scalar
potential φe.

We now want to obtain a solution for the vector potential in equation (4.21). To simplify
the process, we start with a z-directed constant current of infinitesimal length l at the origin
of a rectangular coordinate system, see Figure 4.1.

With the current density now given by Je = I0lδ(r)ûz, the vectorial, inhomogeneous
Helmholtz equation results in a scalar one:

∇2Aez + k2
0Aez = −μ0I0lδ(r). (4.24)
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y

x

z

l

I0

Figure 4.1 z-directed constant current I0 of infinitesimal length l at the origin of a rectangular
coordinate system.

To solve for Aez we consider two situations.

1. Static situation In the static situation, ω = 0 and thus k0 = 0. Equation (4.24) then
reduces to Poisson’s equation

∇2Aez = −μ0I0lδ(r). (4.25)

Knowing that Poisson’s equation for the electrostatic potential, from equation (4.23) for
k0 = 0, has solution [1, 2]

φe = ρe

4πε0r
, (4.26)

we find as a solution for equation (4.24)

Aez = μ0I0lδ(r)

4πr
. (4.27)

2. Outside the source volume Outside the source volume the current density is zero
and the Helmholtz equation (4.24) reduces to a homogeneous one

∇2Aez + k2
0Aez = 0. (4.28)

The solution of this equation is of the form

Aez = C
e−jk0r

r
, (4.29)

where C is a constant still to be determined.2 If we look at the static situation, that is
k0 = 0, equation (4.28) reduces to the Laplace equation

∇2Aez = 0, (4.30)

2 A solution to equation (4.28) could also be of the form C exp (+jk0r)/r . However, we have implicitly assumed
a time-dependence according to exp (jωt), meaning that the phase of the solution would be (+jk0r + jωt). To
see the movement of the phase front, we need to keep this phase constant for increasing t . We see that we can
only accomplish this for decreasing r . Therefore this solution creates waves moving towards the source. Following
the same reasoning we can see that for the chosen solution, equation (4.29), we have created waves moving away
from the source.
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having a solution of the form3

Aez = C

r
. (4.31)

By comparing equations (4.29) and (4.31) we see that the only difference between a static
and a time-varying solution is a multiplicative factor e−jk0r .

The constant C may be obtained through comparing the solution for the time-varying
situation, equation (4.29), with the solution for the static situation, equation (4.27), to
obtain C = μ0I0lδ(r)/4π .

Aez = μ0I0lδ(r)

4πr
e−jk0r . (4.32)

We will now generalize this result. We start with the orientation of the infinitesimal dipole.
The analysis we have performed for a z-directed constant current may be applied to

all Cartesian components of an arbitrarily oriented, infinitesimal current at the origin.
Combining all the vector potential components then leads to

Ae = μ0I0lδ(r)

4πr
e−jk0r ûr , (4.33)

where ûr = r/r .
Next, we move the infinitesimal dipole out of the origin and place it at a position

r0 = x0ûx + y0ûy + z0ûz, see Figure 4.2(a).
Equation (4.33) then becomes

Ae = I0l(r0 )
μ0

4π

e−jk0 |r−r0 |
|r − r0 | = I0 l(r0 )G (r, r0 ) , (4.34)

z

y

l

x

x0

z0

y0

I0r0

z

y

x

x0

z0

y0

r0

V0

(a) (b)

Figure 4.2 Generalization of the vector potential. (a) Infinitesimal current density placed at posi-
tion r0. (b) Infinitesimal current density replaced by volume current density.

3 Since Aez is a function of r only, we write the Laplace equation in spherical coordinates to obtain
d2Aez

dr2 +
2
r

dAez

dr
= 0. Then it can be easily seen that a solution must be of the form C

r
.
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where

|r − r0| =
√

(x − x0)2 + (y − y0)2 + (z − z0)2. (4.35)

G (r, r0) is called the Green’s function of this problem.4 It describes the response (vector
potential) at observation position r, due to a point source (current density) of unit strength
at source position r0.

Finally, we abandon the infinitesimal dipole of strength I0l and assume that we have a
current density in a source volume V0, see Figure 4.2(b). We now add all the contributions
at all the positions r0 within V0 to obtain

Ae = μ0

4π

∫∫∫
V0

Je (r0)
e−jk0|r−r0|
|r − r0| dV0 =

∫∫∫
V0

Je (r0) G (r, r0) dV0. (4.36)

Similarly, we find for the generalized scalar potential

φe = 1

4πε0

∫∫∫
V0

ρe (r0)
e−jk0|r−r0|
|r − r0| dV0 = 1

μ0ε0

∫∫∫
V0

ρe (r0)G (r, r0) dV0. (4.37)

Having reached this point, it should be remembered that we introduced the concept of the
vector potential to be able to calculate the radiated fields based on the current density only.
From equation (4.36) we see that it suffices to know the current density only to calculate
the vector potential. We have seen, see equation (4.15), that we can then calculate the
radiated magnetic field from the vector potential

H = 1

μ0
∇ × Ae. (4.38)

The electric field is calculated as, see equation (4.17)

E = −jωAe − ∇φe. (4.39)

By substituting the Lorentz gauge, equation (4.20), we obtain

E = −jωAe − ∇
(

− ∇ · Ae

jωε0μ0

)
= −jωAe + ∇∇ · Ae

jωε0μ0
. (4.40)

Then, by using the vector identity (3.51), ∇ × ∇ × Ae = ∇∇ · Ae − ∇2Ae, we get

E = −jωAe + ∇2Ae

jωε0μ0
+ ∇ × ∇ × Ae

jωε0μ0
= 1

jωε0μ0

[∇ × ∇ × Ae + ∇2Ae + k2
0Ae

]
.

(4.41)

Substituting equation (4.21), ∇2Ae + k2
0Ae = −μ0Je, in equation (4.41) finally results in

E = 1

jωε0μ0
[∇ × ∇ × Ae − μ0Je] . (4.42)

4 The Green’s function of this problem is also seen as being defined excluding the term μ0
4π

.
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So, with equations (4.38) and (4.42) we are able to calculate the radiated fields every-
where, using the current density only.

Most of the time, we do not want to calculate the radiated fields everywhere, but
only at large distances from the antenna, that is in the far-field, well outside the source
volume V0. Outside the source volume, Je = 0 and the magnetic and electric fields are
calculated using

H = 1

μ0
∇ × Ae,

E = 1

jωε0μ0
∇ × ∇ × Ae, (4.43)

Ae(r) = μ0

4π

∫∫∫
V0

Je

e−jk0|r−r0|
|r − r0| dV0.

4.3 Far-Field Approximations

Antennas will be used for communication over distances that are much larger than the
antenna or the wavelength used. Therefore we need to evaluate the radiated fields at large
distances. For this so-called far-field we may introduce approximations. These approxi-
mations will be based on the fact that the distances between the observation point P at r
and source points at r0, |rd | = |r0 − r|, will approximate those between the observation
point and the origin for r = |r| becoming very large, see Figure 4.3.

4.3.1 Magnetic Field

The starting point is equation (4.43):

H = 1

μ0
∇ × Ae, (4.44)

where
Ae =

∫∫∫
V0

Je(r0)G(r, r0)dV0, (4.45)

P

y

r

rd

r0

z

x

x0

y0

z0

Figure 4.3 |rd | = |r0 − r| will approximate r = |r| for r becoming very large.
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and

G(r, r0) = μ0

4π

e−jk0|r−r0|
|r − r0| . (4.46)

The magnetic field may thus be written as

H = 1

μ0

∫∫∫
V0

∇r × Je(r0)G(r, r0)dV0, (4.47)

where we have used the subscripted nabla-operator ∇r to stress the fact that the operation
is on the observation point.

Using equation (3.52) for the curl of the product of a scalar and a vector we may write,
for the kernel of the integration

∇r × Je(r0)G(r, r0) = G(r, r0)∇r × Je(r0) + [∇rG(r, r0)] × Je(r0)

= [∇rG(r, r0)] × Je(r0) (4.48)

In the above, use has been made of ∇r × Je(r0) = 0 since the nabla-operator operates on
the observation point (r) and not on the source point (r0).

Equation (4.48) may be expanded using the chain rule for the derivative applied to
equation (4.46).5

∇rG(r, r0) = μ0

4π
∇r

[
1

|r − r0|
]

e−jk0|r−r0| + μ0

4π

1

|r − r0|∇r

[
e−jk0|r−r0|]

= μ0

4π

[
− r − r0

|r − r0|3
]

e−jk0|r−r0| + μ0

4π

1

|r − r0|
[
−jk0e

−jk0|r−r0| r − r0

|r − r0|
]

= − μ0

4π

r − r0

|r − r0|e
−jk0|r−r0|

[
1

|r − r0|2
+ j

k0

|r − r0|
]

(4.49)

Since r − r0 = rd , see Figure 4.3, and rd = |rd |, we can write equation (4.49) as

∇rG(r, r0) = − μ0

4π

e−jk0rd

rd

(
jk0 + 1

rd

)
ûrd , (4.50)

where
ûrd = rd

rd

. (4.51)

If we substitute equation (4.50) in equation (4.47), we find for the magnetic field

H = − 1

4π

∫∫∫
V0

(
jk0 + 1

rd

)
e−jk0rd

rd

ûrd × Je (r0) dV0. (4.52)

5 Use could be made of equation (3.20), ∇ ≡ δ
δx

ûx + δ
δy

ûy + δ
δz

ûz, and |r − r0| =√
(x − x0)2 + (y − y0)2 + (z − z0)2.
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This equation will be used to apply to far-field approximations. To start with, we rewrite
the equation for rd in such a way that we may easily apply a Taylor series expansion [3]:6

rd =
√

(x − x0)2 + (y − y0)2 + (z − z0)2

= {(
x2 + y2 + z2

) − 2 (xx0 + yy0 + zz0) + (
x2

0 + y2
0 + z2

0

)} 1
2

= {
r2 − 2 (xx0 + yy0 + zz0) + (

x2
0 + y2

0 + z2
0

)} 1
2

= r

{
1 − 2

r2
(xx0 + yy0 + zz0) + x2

0 + y2
0 + z2

0

r2

} 1
2

(4.53)

Applying a Taylor expansion now to rd results in

rd = r

{
1 + 1

2

[
− 2

r2
(xx0 + yy0 + zz0) + x2

0 + y2
0 + z2

0

r2

]

−1

8

[
− 2

r2
(xx0 + yy0 + zz0) + x2

0 + y2
0 + z2

0

r2

]2

+ · · ·
}

. (4.54)

Grouping terms and assuming that r0 is so much smaller than r that we may leave out
terms involving powers of r0 higher than two, leads to

rd = r

{
1 − xx0 + yy0 + zz0

r2
+ x2

0 + y2
0 + z2

0

2r2
− (xx0 + yy0 + zz0)

2

2r4
+ · · ·

}
. (4.55)

If r is large enough relative to r0 we only need to use the first two terms in equation
(4.55) and can simplify this expression further to

rd ≈ r − xx0 + yy0 + zz0

r
= r − ûrd · r0. (4.56)

The above approximation is allowed if the third term in equation (4.55) is ‘small
enough’.

A widely accepted and used criterion for ‘small enough’ is

x2
0 + y2

0 + z2
0

2r
≤ λ0

16
, (4.57)

where λ0 is the free-space wavelength.7 The criterion stated in equation (4.57) also leads
to the well-known far-field criterion that states that the distance of the observation point
from the origin of the antenna should satisfy

r ≥ 2D2

λ0
, (4.58)

to be in the far-field, where D is the largest dimension of the antenna.

6 The tailor expansion of
√

1 + x is given by
√

1 + x = (1 + x)
1
2 = 1 + 1

2 x − 1
8 x2 + 1

16 x3 + . . . for
(−1 < x < 1).
7 Applying this criterion means that we will make a phase error of at most k0(λ0/16) = (2π/λ0)(λ0/16) = π/8 =
22.5◦. This maximum phase error corresponds to the accuracy with which phase could be measured at the time
this criterion was developed, which was during World War II [4].
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Example
Prove that the far-field criterion of equation (4.58) follows from equation (4.57).

Let us assume an antenna with a maximum dimension D, as indicated in Figure 4.4.
The maximum value of r0 = |r0| is then equal to half that of the maximum dimension,

see Figure 4.4,

r0 =
√

x2
0 + y2

0 + z2
0 ≤ D

2
. (4.59)

Substitution of equation (4.59) in equation (4.57) then gives

D2/4

2r
≤ λ0

16
, (4.60)

which is equivalent with

r ≥ 2D2

λ0
. (4.61)

rd in the exponent in the kernel of the integration in equation (4.52) may be replaced now
by r − ûrd · r0. For the denominators in the kernel, we may even replace rd by r since
the impact on the amplitude is less severe than on the phase:

e−jk0rd

rd

≈ e−jk0r

r
ejk0ûrd

·r0 . (4.62)

Further (
jk0 + 1

rd

)
≈

(
jk0 + 1

r

)
≈ jk0, (4.63)

and, see Figure 4.3,

ûrd ≈ ûr . (4.64)

Substituting the approximations (4.62)–(4.64) in equation (4.52) finally gives us the far-
field approximation for the magnetic field

H ≈ −jk0e
−jk0r

4πr
ûr ×

∫∫∫
V0

Je (r0) ejk0ûr ·r0dV0. (4.65)

D
r0

Figure 4.4 Antenna, having maximum dimension D.
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4.3.2 Electric Field

The starting point for the calculation of the far electric field is equation (4.43):

E = 1

jωε0μ0
∇ × ∇ × Ae = 1

jωε0
∇ ×

[
1

μ0
∇ × Ae

]
= 1

jωε0
∇ × H. (4.66)

Substituting equation (4.52) in equation (4.66) gives

E = 1

j4πωε0

∫∫∫
V0

∇r ×
[(

−jk0 − 1

rd

)
e−jk0rd

r2
d

rd × Je (r0)

]
dV0, (4.67)

where use has been made of ûrd = rd/rd .
To ease the solving of this equation we introduce a scalar help-variable and a vector

help-variable, that we define as

ψ (r, r0) =
(

−jk0 − 1

rd

)
e−jk0rd

r2
d

, (4.68)

a (r, r0) = rd × Je (r0) . (4.69)

For the sake of clarity, we will not explicitly write the (r, r0)-dependences in ψ and a
in the remainder of this section.

Using equation (3.52) we write for the curl in the integral of equation (4.67)

∇r × ψa = ∇rψ × a + ψ [∇r × a] . (4.70)

Next, we will calculate the two right-hand side components of equation (4.70). Applying
the chain rule, we find

∇rψ =
(

−jk0 − 1

rd

)
∇r

[
e−jk0rd

r2
d

]
+ e−jk0rd

r2
d

∇r

[
−jk0 − 1

rd

]

=
(

−jk0 − 1

rd

) [
−2e−jk0rd

1

r3
d

ûrd + 1

r2
d

(−jk0) e−jk0rd ûrd

]
+ e−jk0rd

r2
d

[
1

r2
d

ûrd

]

= e−jk0rd

r2
d

k2
0

[
−1 − 3

jk0rd

+ 3

(k0rd)
2

]
ûrd , (4.71)

and thus

∇rψ × a = e−jk0rd

r2
d

k2
0

[
−1 − 3

jk0rd

+ 3

(k0rd)
2

]
ûrd × rd × Je (r0)

= e−jk0rd

rd

k2
0

[
−1 − 3

jk0rd

+ 3

(k0rd)
2

]
ûrd × ûrd × Je (r0) , (4.72)

where, again, use has been made of ûrd = rd/rd .
For the second component of the right-hand-side of equation (4.70), we start with

∇r × a = ∇r × rd × Je (r0) = ∇r × [(r − r0) × Je (r0)] = −2Je (r0) . (4.73)
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Then

ψ∇r × a = −2

(
−jk0 − 1

rd

)
e−jk0rd

r2
d

Je (r0) . (4.74)

Substitution of equations (4.72) and (4.74) in equation (4.70) then gives

∇r × ψ (r, r0) a (r, r0) = e−jk0rd

rd

k2
0

[
−1 − 3

jk0rd

+ 3

(k0rd)
2

]
ûrd × ûrd × Je (r0)

+2

(
jk0 + 1

rd

)
e−jk0rd

r2
d

Je (r0) (4.75)

We now apply the approximations for large rd that we also applied to obtain the far
magnetic field. Thus, we neglect terms r−n

d for n> 1 and we replace rd by r − ûrd ·
r0 in the exponent (phase) and replace rd by r in the denominators (amplitude). Thus
we obtain

∇r × ψ (r, r0) a (r, r0) ≈ −e−jk0r

r
k2

0e
jk0ûrd

·r0 ûrd × ûrd × Je (r0) . (4.76)

If we further use the approximation ûrd ≈ ûr , we finally find for the far electric field

E ≈ − k2
0

jωε0

e−jk0r

4πr
ûr × ûr ×

∫∫∫
V0

Je (r0) ejk0ûr ·r0dV0. (4.77)

From the approximations for the far magnetic field, equation (4.65), and the far electric
field, equation (4.77), we observe that

• the magnetic field is perpendicular to the propagation direction ûr ;8

• the electric field is perpendicular to the propagation direction ûr ;
• the electric field is perpendicular to the magnetic field;
• the electromagnetic waves propagate away from the source Je (r0).9

Thus, sufficiently far away from the antenna, transverse electromagnetic (TEM) waves
exist. Furthermore, the electric field may be expressed in terms of the magnetic field:

E = −k2
0

jωε0 · −jk0
ûr × H

= −k0

ωε0
ûr × H

= ω
√

ε0μ0

ωε0
H × ûr

= Z0H × ûr , (4.78)

where Z0 =
√

μ0
ε0

is the characteristic impedance of free space.

8 The cross product of two vectors is perpendicular to both of these vectors.
9 by virtue of the exp (−jk0r) term.
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Equations (4.65) and (4.77) also show that the far magnetic and electric fields at an
observation point consist of the added contributions of all source points within the source
volume V0, corrected for their relative positions within V0 with a factor exp

(
jk0ûr · r0

)
.

This last term creates phase-differences between the various source-point contributions.
Therefore, in the far-field we may find positions where constructive interference of the
source-point contributions occurs and positions where destructive interference of the
source-point contributions occurs. Therefore, the three-dimensional radiation pattern will
not be uniform (although two-dimensional pattern cuts may be, as we have seen in
Chapter 2).

In Chapter 2 we stated the far electric field in equations (2.2)–(2.4) without any proof.
Equation (4.77) now shows that the amplitude and phase behavior, exp (−jk0r)/r , is
correct and that, since E is perpendicular to ûr , it is of the form E = Eϑ ûϑ + Eϕûϕ .

The vector of Poynting (time-averaged power density) is then found to be

S = 1

2Z0
|E|2 ûr . (4.79)

4.4 Reciprocity

So far we have implicitly assumed that antennas are being used for transmission of elec-
tromagnetic waves, using a current density as a source. Through the Lorentz reciprocity
theorem we will show that antennas, when used for receiving electromagnetic waves,
exhibit the same characteristics as when being used for transmitting electromagnetic
waves. The receiving antenna pattern (a sensitivity pattern) is identical to the transmitting
antenna pattern (a radiation pattern).

The Lorentz reciprocity theorem states that the relationship between a time-varying
current density and the resulting electric field is unchanged if one interchanges the points
where the current density is placed and where the field is measured.

4.4.1 Lorentz Reciprocity Theorem

So, let’s consider two volumes VA and VB with source current densities JA and JB ,
respectively, see Figure 4.5.

Source JA creates fields EA and HA everywhere in space. The fields are interrelated
through

∇ × HA = jωε0EA + JA, (4.80)

and

∇ × EA = −jωμ0HA. (4.81)

Similarly, source JB creates fields EB and HB everywhere in space. These fields are
interrelated through

∇ × HB = jωε0EB + JB, (4.82)

∇ × EB = −jωμ0HB. (4.83)
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JB

JA
VB

VA

response
due to JA

response
due to JB

Figure 4.5 Source JA in volume VA creates fields EA and HA everywhere in space and source
JB in volume VB creates fields EB and HB everywhere in space.

We now form the dot-product of equation (4.80) with EB , the dot-product of equation
(4.83) with HA and subtract the results, which leads to

−∇ · (EB × HA) = jωε0EA · EB + jωμ0HA · HB + EB · JA, (4.84)

where we have made use of the vector identity

∇ · (a × b) = b · ∇ × a − a · ∇ × b. (4.85)

Now, we interchange the subscripts A and B in equation (4.84) and subtract the original
equation from this new equation. This results in

−∇ · (EA × HB − EB × HA) = EA · JB − EB · JA. (4.86)

Outside the source volumes VA and VB , JA = JB = 0, see Figure 4.5, and equation
(4.86) reduces to

−∇ · (EA × HB − EB × HA) = 0. (4.87)

This equation is known as the Lorentz reciprocity theorem .
The integral form of the Lorentz reciprocity theorem for a source-free volume is found

by integrating equation (4.87) over the source-free volume and then applying the diver-
gence theorem.10 This results in∫∫

S

(EA × HB − EB × HA) · dS = 0. (4.89)

For a volume containing sources, integration of equation (4.86) over that volume
results in

−
∫∫

S

(EA × HB − EB × HA) · dS =
∫∫∫

V

(EA · JB − EB · JA) dV . (4.90)

10 Divergence theorem: ∫∫∫
V

∇ψdV =
∫∫

S

ψdS. (4.88)
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ûr ûJ × ûj = ûr

ûj × ûJ = −ûr

dS = dSûr

dS

y
y0

z0

x0

x

z ûϕ

j

ûθq

Figure 4.6 Spherical coordinates and unit vectors.

Next, we assume that our sources are finite in extent, as antennas are. We have seen
that far away from the sources, the electric and magnetic fields are locally TEM. This
means that of the three possible spherical coordinates, only ϑ- and ϕ-components actually
exist, see Figure 4.6.

The field components at large distances from the source thus behave – see Figure 4.6
and equation (4.78) – as

Eϑ = Z0Hϕ, (4.91)

Eϕ = −Z0Hϑ. (4.92)

If we substitute this in the left-hand side of equation (4.90) we obtain

−Z0

∫∫
s

(
HAϑ

HBϑ
+ HAϕHBϕ − HBϑ

HAϑ
− HBϕHAϕ

)
dS = 0, (4.93)

reducing equation (4.90) to∫∫∫
VB

EA · JBdV =
∫∫∫

VA

EB · JAdV . (4.94)

This relation between sources and fields will be used to prove antenna reciprocity.

4.4.2 Antenna Reciprocity

Consider two perfect electrically conducting antennas, A and B. An electric field will
only be present between the clamps of each antenna. If we also pose the currents to be
constant through the clamps, equation (4.94) will become

VAIA = VBIB, (4.95)

where VA is the open circuit voltage across the clamps of antenna A, due to an electric field
EB . VB is the open circuit voltage across the clamps of antenna B, due to an electric
field EA.11

11 Remember that
∫

E · dl = −V .
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We may write equation (4.95) as

VA

IB

= VB

IA

. (4.96)

In general, the voltage at the clamps of one antenna, due to another antenna that is
excited, is influenced by a number of factors. These factors include both antennas, the
medium, obstacles, and so on. In circuit parameters we may write this as

VA = ZAAIA + ZABIB, (4.97)

VB = ZBAIA + ZBBIB, (4.98)

where VA, VB , IA and IB are the clamp voltages and currents of antennas A and B.
When antenna A is excited with a current IA, the open circuit voltage of antenna B is

VB |IB=0. The transfer impedance ZBA then follows from

ZBA = VB

IA

∣∣∣∣
IB=0

. (4.99)

When antenna B is excited with a current IB , the open circuit voltage of antenna A is
VA|IA=0. The transfer impedance ZAB then follows from

ZAB = VA

IB

∣∣∣∣
IA=0

. (4.100)

If we compare equations (4.96), (4.99) and (4.100), we see that as a result of the reciprocity
theorem

ZBA = ZAB = Zm, (4.101)

where Zm is the transfer impedance between the two antennas.
We assume now that antenna A is excited with current IA and that the voltage VB is

measured across the clamps of antenna B. We also assume that both antennas are spaced

IA

(a) (b)

VB(q,j)

VA(q,j)

IB

Figure 4.7 The transmit and receive patterns of an antenna are identical since ZAB(ϑ, ϕ) =
ZBA(ϑ, ϕ) = Zm(ϑ, ϕ). (a) The transmission pattern of antenna A is ZBA(ϑ, ϕ) = VB(ϑ, ϕ)/IA. (b)
The receive pattern of antenna A is ZAB(ϑ, ϕ) = VA(ϑ, ϕ)/IB .
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apart over such a distance that they are positioned in each other’s far-field regions. The
transfer impedance ZBA is now the far-field radiation pattern of antenna A, if antenna
B is moved around antenna A over the surface of a sphere with a constant radius, see
Figure 4.7(a).

If now antenna B is excited and antenna A is used for reception, the transfer impedance
ZAB is the receive pattern, if antenna B is moved over the same sphere.

Since the transfer impedances ZAB and ZBA are equal, a consequence of the reciprocity
theorem is that the transmit and receive patterns of an antenna are identical.

4.5 Problems

4.1 Derive the so-called continuity equation ∇ · Je = − ∂ρe

∂t
from the Maxwell equations.

Start by taking the divergence of equation (4.2).

4.2 Prove that the solutions for Ae, equation (4.36), and φe, equation (4.37), still satisfy
the Lorentz gauge φe = − 1

jωε0μ0
.

4.3 If, in approximating the far-field, we would not accept phase errors exceeding 10
degrees, what would be the new rule of thumb for the far-field (instead of r ≥ 2D2

λ0
)?

4.4 With S(r) = 1
2� {E(r) × H∗(r)}, prove that S(r) = 1

2Z0
|E(r)|2 ûr .

4.5 Explain why, for the explanation of antenna reciprocity – see Section 4.4.2 and
Figure 4.7 – it is necessary that the space in between the two antennas is free of
(fixed) obstacles.
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5
Dipole Antennas

In the previous chapter, we started with an infinitesimal, z-directed, constant current1 to derive the
vector potential. From there we generalized the vector potential by allowing an arbitrary orientation
and the current to be distributed over a source volume. For deriving the dipole radiation pattern,
we will start again with the infinitesimal, z-directed, constant current. From there, we will lengthen
the dipole, include a feeding point and from an assessment of the current distribution calculate the
radiation pattern. As well as the radiation pattern, from a system point of view, we also want to
know the input impedance. Since the derivation of the input impedance is beyond the scope of this
book, we will summarize a few approximate equations for this parameter.

5.1 Elementary Dipole

The starting point of the dipole antenna discussion will be the elementary or Hertz dipole.
This elementary dipole is (here) a z-directed current with constant amplitude I0 over
infinitesimal length l, see Figure 5.1(a), that we also used to start the discussion of the
vector potential and radiation fields, see Figure 4.1.

Before we proceed, we must make some remarks concerning Figure 5.1(a).

• First of all, we note that this elementary dipole antenna cannot exist stand-alone in
reality since the current needs somewhere to come from and somewhere to go to. We
may think of this elementary dipole as a small length of current-carrying conductor
that is one of multiple segments into which we must divide a real (wire) antenna, in
order to calculate its properties. This imaginary elementary dipole antenna is important,
however, because we can easily calculate the far electric and magnetic fields.

• The name of this elementary radiator, dipole, suggests that we are dealing with a
doublet of equal-amplitude, positive and negative charges. To demonstrate that this is
indeed so, we start by taking the divergence of the Maxwell equation (4.12). Using the
vector identity (3.49) then leads to

∇ · ∇ × H(r) = 0 = jωε0∇ · E(r) + ∇ · Je(r). (5.1)

1 By constant we mean that the amplitude of the current is constant over the length of the current. The current
itself is oscillatory, having an exp (jωt) time dependence.

Antenna Theory and Applications, First Edition. Hubregt J. Visser.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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r
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Figure 5.1 Elementary or Hertz dipole. (a) z-directed current with constant amplitude I0 over
infinitesimal length l. (b) Two equal, but opposite charges, displaced over a distance l along the
z-axis of a rectangular coordinate system.

Next, we substitute the Maxwell equation (4.14) in equation (5.1) and obtain

ρe(r) = − 1

jω
∇ · Je(r). (5.2)

The current density is given by, see Figure 5.1(a),

Je(r) = I0lδ(x)δ(y)δ(z)ûz. (5.3)

The derivative of the Dirac delta follows from the definition of the derivative,

dδ(z)

dz
= lim

l→0

δ
(
z + l

2

) − δ
(
z − l

2

)
l

, (5.4)

so that equation (5.4) substituted in equation (5.2) gives

ρe(r) = − lim
l→0

I0δ(x)δ(y)

jω

[
δ

(
z + l

2

)
− δ

(
z − l

2

)]
. (5.5)

We see that the charge density is indeed that of a dipole, the charges being located at
(x, y, z) = (0, 0, l/2) and (x, y, z) = (0, 0, −l/2).

5.1.1 Radiation

As we saw in the previous chapter, the far magnetic and electric fields may be approxi-
mated2 by equations (4.65) and (4.78):

H = −jk0e
−jk0r

4πr
ûr ×

∫∫∫
V0

Je (r0) ejk0ûr ·r0dV0, (5.6)

E = Z0H × ûr , (5.7)

where Z0 =
√

μ0
ε0

is the characteristic impedance of free space.

2 Since in calculating the radiation patterns of antennas we will always be in the far-field, we replace the ≈-sign
in the far-field approximations with an equality sign.
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Figure 5.2 Rectangular coordinate unit vectors, relative to the origin O and spherical coordinate
unit vectors, relative to the observation point P .

Upon substituting equation (5.3) in equation (5.6) we need to calculate a cross product of
ûr and ûz. To perform this cross product calculation, we will first transform the rectangular
coordinate unit vector into a combination of spherical coordinate unit vectors using [1],
see also Figure 5.2,

ûx = sin ϑ cos ϕûr + cos ϑ cos ϕûϑ − sin ϕûϕ, (5.8)

ûy = sin ϑ sin ϕûr + cos ϑ sin ϕûϑ + cos ϕûϕ, (5.9)

ûz = cos ϑ ûr − sin ϑ ûϑ . (5.10)

With equation (5.10) we find that ûr × ûz = cos ϑ ûr × ûr − sin ϑ ûr × ûϑ =
− sin ϑ ûr × ûϑ . With the aid of Figure 5.2 we find that ûr × ûϑ = ûϕ , so that

H = −jk0e
−jk0r

4πr

∫∫∫
V0

−I0lδ (x0) δ (y0) δ (z0) sin ϑ ûϕe
jk0ûr ·r0dV0

= jk0e
−jk0r

4πr
I0l sin ϑ ûϕ, (5.11)

and, since ûϕ × ûr = ûϑ , see Figure 5.2,

E = Z0H × ûr = jk0Z0I0le
−jk0r

4πr
sin ϑ ûϑ . (5.12)

Now we can calculate the radiation pattern.
To start with, we find the time-average power density per unit of surface area(

r2 sin ϑdϑdϕ = r2d	
)

by substituting the expression for the electric field in
equation (2.8):

S(r) = S(ϑ, ϕ) = 1

2Z0
|E(r)|2 ûr = 1

2

k2
0Z0 (I0l)

2

(4πr)2 sin2 ϑ ûr . (5.13)

The radiated power per unit of solid angle (d	) is then

P (ϑ, ϕ) = ∣∣r2S (ϑ, ϕ)
∣∣ = 1

2

k2
0Z0 (I0l)

2

(4π)2 sin2 ϑ. (5.14)
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Figure 5.3 Polar radiation pattern cut in a plane ϕ = constant on a linear amplitude scale.

The maximum radiated power is found for ϑ = π
2 , so that the normalized radiation

pattern is given by

F (ϑ, ϕ) = F (ϑ) = P (ϑ)

Pmax

= P (ϑ)

P
(

π
2

) = sin2 ϑ. (5.15)

The radiation pattern does not show a ϕ-dependence; the pattern is rotationally sym-
metric around the z-axis of the rectangular coordinate system. A polar plot of the radiation
pattern in an arbitrary plane ϕ, on a linear scale, is shown in Figure 5.3.

As expected, we observe that the radiation is at maximum in the directions perpen-
dicular to the dipole and that no radiation occurs in the directions along the dipole. For
completeness, in Figure 5.4(a) we show the ϕ = constant radiation pattern cut in a rect-
angular plot, having a linear amplitude scale, and in Figure 5.4(b) we show the pattern
cut in a rectangular plot, having a logarithmic (10 log [F(ϑ)]) scale.

With the radiation pattern now shown, we will proceed with quantifying the radiation
pattern, that is calculate the directivity. We defined the directivity function in Chapter 2,
equation (2.9), as

D(ϑ, ϕ) = P(ϑ, ϕ)

Pt/4π
, (5.16)

where Pt is the total transmitted power. To calculate the total radiated power we integrate
the radiated power per unit of solid angle, P(ϑ), over all possible angles ϑ and ϕ. With
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Figure 5.4 Rectangular radiation pattern cut in a plane ϕ = constant. (a) Linear amplitude scale.
(b) Logarithmic amplitude scale.

the aid of equation (5.14), we find

Pt =
∫ 2π

ϕ=0

∫ π

ϑ=0
P(ϑ) sin ϑdϑdϕ

= k2
0Z0 (I0l)

2

32π2

∫ 2π

ϕ=0

∫ π

ϑ=0
sin3(ϑ)dϑdϕ

= k2
0Z0 (I0l)

2

16π

∫ π

ϑ=0
sin3(ϑ)dϑ =

= k2
0Z0 (I0l)

2

12π
. (5.17)

In the above, use has been made of
∫ π

ϑ=0 sin3(ϑ)dϑ = 4
3 .

Substitution of equations (5.14) and (5.17) in equation (5.16) gives the directivity
function as

D(ϑ) = 3

2
sin2(ϑ), (5.18)

and the directivity, being defined as the maximum of the directivity function, is therefore

D = [D(ϑ)]max = 3

2
, (5.19)
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meaning that an elementary dipole radiates – in the direction of maximum radiation – one
and a half times the power that a (hypothetical) uniform radiator would, for the same total
radiated power.3

5.1.2 Input Impedance

To avoid needlessly complicating the analysis, we assume that the elementary dipole only
has a real input impedance and no losses so that the input impedance equals the radiation
resistance. From equation (2.17) we know that the total radiated power may be expressed
then as

Pt =
1
2 |VA|2

RA

, (5.20)

where VA is the voltage over the antenna clamps and RA is the radiation resistance. Since
VA = I0RA, we find for the radiation resistance

RA = Pt

1
2 |I0|2

. (5.21)

Substitution of equation (5.17) in equation (5.21) and using k0 = 2π
λ0

, λ0 being the
wavelength in free space, and Z0 = 120π	 gives for the radiation resistance

RA = 80π2

(
l

λ0

)2

. (5.22)

Note that this equation is valid for an elementary dipole, thus for l ↓ 0, only.

Example
Calculate the input impedance of a small dipole antenna operating at 3000 kHz and having
a length of 1 m. Calculate the reflection coefficient when an antenna having this input
impedance is connected to a 50 	 transmission line.

Assuming no losses and all impedances being real, the input impedance of an elementary
dipole antenna will equal the radiation resistance. For the frequency and length stated,
the dipole antenna length equals l = 0.01λ0 which is indeed a small or elementary dipole
antenna. Substituting this length in equation (5.22) results in

RA = Zin = 80π2(0.01)2 = 0.079 	. (5.23)

The reflection coefficient is found upon substituting this input impedance value in
equation (2.20)

� =
∣∣∣∣RA − Z0

RA + Z0

∣∣∣∣ =
∣∣∣∣RA − 50

RA + 50

∣∣∣∣ =
∣∣∣∣0.079 − 50

0.079 + 50

∣∣∣∣ = 0.9968. (5.24)

The example shows that the input impedance of an elementary dipole antenna is very
small, which makes it very difficult to impedance match it to standard (50 	) equipment.

3 Since, in comparing with a uniform radiator, the same total power is radiated, the ‘gain’ of one and a half in
certain directions must be compensated for in other directions. This explains the ‘nulls’ in directions along the
dipole axis.
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In real life we also have to deal with (ohmic) losses and, due to the low radiation resistance,
the losses (unwanted) will easily dominate the radiation resistance (wanted loss) so that a
very small radiator in general will have a very low radiation efficiency.4 Equation (5.22)
shows that we can increase the efficiency, by increasing the radiation resistance as a result
of increasing the dipole length. However, equation (5.22) is only valid for small lengths,
so we have to derive new equations for a non-infinitesimal dipole antenna.

5.2 Non-Infinitesimal Dipole Antenna

We now consider a thin wire antenna of non-infinitesimal half-length l, excited in the
middle, see Figure 5.5.

We assume that a � λ0 and d � λ0, and therefore the influences from the radius and
the feed gap may be neglected. The current density needs to be zero at z = l and at z = −l.
Also, since the current along the wires of the antenna should be essentially the same as
that on an open-circuited two-wire transmission line (we may think of the wire antenna in
Figure 5.5 as being constructed by bending each of the ends of a two-wire transmission
line 90 degrees outward), the current density will be sinusoidal and may be written as

Je = I0δ(x)δ(y) sin [k0 (l − |z|)] ûz for − l ≤ z ≤ l. (5.25)

5.2.1 Radiation

For finding the normalized radiation pattern and calculating the directivity, we first need
to calculate the far electric field. Therefore we use equation (4.77)

E = −k2
0

jωε0

e−jk0r

4πr
ûr × ûr ×

∫∫∫
V0

Je (r0) ejk0ûr ·r0dV0. (5.26)

P
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r
z

x
2a

2l

Figure 5.5 z-directed, thin-wire antenna of half-length l.

4 The radiation efficiency η is given by

η = RA

RA + RL

, (5.27)

where RL is the loss resistance.
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After substituting equation (5.25) in equation (5.26), we need to calculate ûr × ûr × ûz.
To be able to perform this calculation we will first transform the rectangular coordinate
system unit vector ûz into spherical coordinate system unit vectors, using equation (5.10).
Then, also using Figure 5.2,

ûr × ûr × ûz = ûr × ûr × [
cos ϑ ûr − sin ϑ ûϑ

] = − sin ϑ ûr × ûϕ = sin ϑ ûϑ . (5.28)

Also by using equation (5.10) and Figure 5.2 the dot product in the exponent in the
integral is found to be

ûr · r0 = ûr · z0ûz = ûr · z0
[
cos ϑ ûr − sin ϑ ûϑ

] = z0 cos ϑ, (5.29)

so that, finally, equation (5.26) becomes

E = −k2
0I0

jωε0

e−jk0r

4πr
sin ϑ ûϑ

∫ l

−l

sin [k0 (l − |z0|)] ejk0z0 cos ϑdz0. (5.30)

We see that the far electric field of the z-directed, thin wire antenna only has
a ϑ-component, just as we found for the infinitesimal, z-directed dipole antenna,
equation (5.12).

We proceed by ‘processing’ the integral in equation (5.30). We start by expanding the
|z0|-term:

I =
∫ l

−l

sin [k0 (l − |z0|)] ejk0z0 cos ϑdz0

=
∫ 0

−l

sin [k0 (l + z0)] ejk0z0 cos ϑdz0 +
∫ l

0
sin [k0 (l − z0)] ejk0z0 cos ϑdz0. (5.31)

Then, in the first integral on the right-hand-side of equation (5.31) we change z0 into
−z0 and, at the same time, we interchange the integration boundaries, so that we obtain

I =
∫ l

0
sin [k0 (l − z0)] e−jk0z0 cos ϑdz0 +

∫ l

0
sin [k0 (l − z0)] ejk0z0 cos ϑdz0

= 2
∫ l

0
sin [k0 (l − z0)]

ejk0z0 cos ϑ + e−jk0z0 cos ϑ

2
dz0

= 2
∫ l

0
sin [k0 (l − z0)] cos [k0z0 cos ϑ] dz0. (5.32)

Next, using 2 sin A cos B = sin[A + B] + sin[A − B], we obtain

I =
∫ l

0
sin [k0l + z0k0(−1 + cos ϑ)] dz0 +

∫ l

0
sin [k0l − z0k0(1 + cos ϑ)] dz0

= 2 {cos [k0l cos ϑ] − cos [k0l]}
k0 sin2 ϑ

. (5.33)
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Upon substitution of equation (5.33) for the integral in equation (5.30), we find for the
far electric field

E = jZ0I0
e−jk0r

2πr

[
cos (k0l cos ϑ) − cos (k0l)

sin ϑ

]
ûϑ , (5.34)

where we have used

1

ωε0
= 1

ω
√

ε0μ0

√
ε0
μ0

=
√

μ0
ε0

k0
= Z0

k0
. (5.35)

Both for calculating the radiation pattern and for calculating the gain, we need to know
the radiated power per unit of solid angle. This quantity is found, using equation (2.8)
and equation (5.34) as

P(ϑ) = ∣∣r2S(ϑ)
∣∣ = r2 |E|2

2Z0
= Z0I

2
0

8π2

[
cos (k0l cos ϑ) − cos (k0l)

sin ϑ

]2

. (5.36)

The normalized radiation pattern is obtained by dividing by the maximum of P(ϑ). We
will show the normalized radiation patterns for a number of antenna lengths 2l, starting
with the important (i.e., much-used) half-wavelength antenna (2l = λ0/2).

5.2.1.1 Half-Wavelength Antenna

For 2l = λ0/2, remembering that k0 = 2π/λ0, equation (5.36) reduces to

P(ϑ) = Z0I
2
0

8π2

[
cos

(
π
2 cos ϑ

)
sin ϑ

]2

. (5.37)

The maximum is found for ϑ = π
2 and equals

Z0I2
0

8π2 so that we find for the normalized
(power) radiation pattern

F(ϑ) =
[

cos
(

π
2 cos ϑ

)
sin ϑ

]2

. (5.38)

A polar, linear plot of the radiation pattern in a plane ϕ = constant is shown in
Figure 5.6. In the same figure we also show, for comparison the radiation pattern cut
for an elementary dipole antenna.

The figure clearly shows that the radiation pattern of a half-wave dipole antenna is
very similar to that of an elementary dipole antenna. The lobes are slightly narrower than
those of an elementary dipole antenna, so the directivity should be slightly larger than the
directivity of an elementary dipole (D = 1.5).

For calculating the directivity function, we need to know the total radiated power.
Therefore we need to integrate equation (5.37) over all angles ϕ and ϑ .

The total radiated power is calculated as

Pt =
∫ 2π

ϕ=0

∫ π

ϑ=0
P(ϑ)d	 = 2π

∫ π

0
P(ϑ) sin ϑdϑ. (5.39)
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Figure 5.6 Polar radiation pattern cuts in a plane ϕ = constant on a linear amplitude scale. Solid
line: half-wave dipole antenna. Dashed line: elementary dipole antenna.

Substitution of equation (5.37) in equation (5.39) gives

Pt = Z0I
2
0

4π

∫ π

0

[
cos

(
π
2 cos ϑ

)
sin ϑ

]2

sin ϑdϑ. (5.40)

We will solve this equation by casting it into a form for which a solution is known or
tabulated.

The first step is substituting cos ϑ = u. In doing so, cos2
(

π
2 cos ϑ

) = cos2
(

πu
2

)
,

sin2 ϑ = 1 − cos2 ϑ = 1 − u2 and sin ϑdϑ = −du. Thus, equation (5.40) transforms
into

Pt = −Z0I
2
0

4π

∫ −1

u=1

cos2
(

πu
2

)
1 − u2

du = Z0I
2
0

4π

∫ 1

−1

cos2
(

πu
2

)
1 − u2

du. (5.41)

Next, we substitute 1/
(
1 − u2

) = 1/(1 − u)(1 + u) = 1
2/(1 − u) + 1

2/(1 + u)

to obtain

Pt = Z0I
2
0

8π

∫ 1

−1

cos2
(

πu
2

)
1 − u

du + Z0I
2
0

8π

∫ 1

−1

cos2
(

πu
2

)
1 + u

du. (5.42)

Then, we substitute in the first integral in equation (5.42) 1 − u = s/π , so that u =
(π − s)/π and du = d(−s)/π . In the second integral, we substitute 1 + u = t/π , so that
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u = (t − π)/π and du = dt/π . Equation (5.42) then transforms into

Pt = Z0I
2
0

8π

∫ 0

s=2π

cos2
(

π−s
2

)
s

d(−s) + Z0I
2
0

8π

∫ 2π

t=0

cos2
(

t−π
2

)
t

dt

= Z0I
2
0

4π

∫ 2π

0

cos2
(

q−π

2

)
q

dq. (5.43)

Then, with cos2 A = 1
2 cos 2A + 1

2 , we get

Pt = Z0I
2
0

8π

∫ 2π

0

[
cos(q − π) + 1

q

]
dq, (5.44)

and finally, with cos(q − π) = − cos q,

Pt = Z0I
2
0

8π

∫ 2π

0

[
1 − cos q

q

]
dq. (5.45)

Now we have the equation we were looking for. In [2] (equation 5.2.2) we find for the
cosine integral Ci(z)

Ci(z) = −
∫ ∞

z

cos t

t
dt = γ + ln z +

∫ z

0

cos t − 1

t
dt, (5.46)

where γ is Euler’s constant, γ = 0.5772156649 . . . and Ci(z) is tabulated in [2]. Equation
(5.45) can now be written as

Pt = Z0I
2
0

8π

[
γ + ln(2π) + Ci(2π)

]
. (5.47)

From the tables in [2] it is found that Ci(2π) ≈ −0.02, so that

Pt = Z0I
2
0

8π
· 2.44. (5.48)

The directivity function is now found upon substitution of equations (5.37) and (5.48)
in equation (5.16):

D(ϑ) = P(ϑ)

Pt/4π
= 1.64

[
cos

(
π
2 cos ϑ

)
sin ϑ

]2

, (5.49)

and the directivity is found as

D = [D(ϑ)]max = 1.64. (5.50)

As we have already concluded from inspection of Figure 5.6, the directivity of a
half-wave dipole antenna is slightly larger than that of an elementary dipole antenna
(D = 1.5).
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5.2.1.2 Full-Wavelength Antenna

For 2l = λ0, equation (5.36) reduces to

P(ϑ) = Z0I
2
0

8π2

[
cos (π cos ϑ) + 1

sin ϑ

]2

. (5.51)

The maximum is found for ϑ = π
2 and equals P

(
π
2

) = Z0I2
0

2π2 , so that the normalized
radiation pattern is given by

F(ϑ) = 1

4

[
cos (π cos ϑ) + 1

sin ϑ

]2

. (5.52)

A polar, linear plot of the radiation pattern in a plane ϕ = constant is shown in
Figure 5.7. In the same figure we also show, for comparison, the radiation pattern cut for
an elementary dipole antenna and for a half-wave dipole antenna.

This figure shows that the radiation pattern of a full-wave dipole antenna is similar
to those of an elementary and a half-wave dipole antenna, but that the directivity is
substantially larger than those of the elementary and half-wave dipole antenna (D = 1.5
and D = 1.64, respectively).

For calculating the directivity function, we need to know the total radiated power.
Therefore we need to integrate equation (5.51) over all angles ϕ and ϑ and transform the
integrals into cosine integrals. For the full-wave dipole antenna this process is, as we will
see, even less straight-forward as for the half-wave dipole antenna.
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Figure 5.7 Polar radiation pattern cuts in a plane ϕ = constant on a linear amplitude scale.
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The total radiated power is calculated as

Pt =
∫ 2π

ϕ=0

∫ π

ϑ=0
P(ϑ) sin ϑdϑdϕ = Z0I

2
0

4π

∫ π

0

[
cos(π cos ϑ) + 1

sin ϑ

]2

sin ϑdϑ. (5.53)

Substitution of cos ϑ = u and thus sin2 ϑ = 1 − u2 and sin ϑdϑ = −du in equation
(5.53) results in

Pt = Z0I
2
0

4π

∫ 1

−1

[cos(πu) + 1]2

1 − u2
du

= Z0I
2
0

4π

∫ 1

−1

cos2(πu)

1 − u2
du + Z0I

2
0

4π

∫ 1

−1

1

1 − u2
du + Z0I

2
0

4π
2

∫ 1

−1

cos(πu)

1 − u2
du (5.54)

Next, we use 1/
(
1 − u2

) = 1/(1 − u)(1 + u) = 1
2/(1 − u) + 1

2/(1 + u) and obtain

Pt = Z0I
2
0

8π

∫ 1

−1

cos2(πu)

1 − u
du + Z0I

2
0

8π

∫ 1

−1

cos2(πu)

1 + u
du

+ Z0I
2
0

8π

∫ 1

−1

1

1 − u
du + Z0I

2
0

8π

∫ 1

−1

1

1 + u
du

+ Z0I
2
0

8π
2

∫ 1

−1

cos(πu)

1 − u
du + Z0I

2
0

8π
2

∫ 1

−1

cos(πu)

1 + u
du. (5.55)

Then, upon substitution of 1 − u = s/π , so that u = (π − s)/π and du = d(−s)/π

and 1 + u = t/π , so that u = (t − π)/π and du = dt/π , we get

Pt = Z0I
2
0

8π

∫ 2π

0

cos2(s − π)

s
ds + Z0I

2
0

8π

∫ 2π

0

cos2(t − π)

t
dt

+ Z0I
2
0

8π

∫ 2π

0

1

s
ds + Z0I

2
0

8π

∫ 2π

0

1

t
dt

+ Z0I
2
0

8π
2

∫ 2π

0

cos(s − π)

s
ds + Z0I

2
0

8π
2

∫ 2π

0

cos(t − π)

t
dt

= Z0I
2
0

4π

∫ 2π

0

cos2(q − π)

q
dq + Z0I

2
0

4π

∫ 2π

0

1

q
dq + Z0I

2
0

4π

∫ 2π

0

cos(q − π)

q
dq. (5.56)

With the substitution of cos(q − π) = − cos q and cos2 q = 1
2 cos 2q + 1

2 in equation
(5.56), we get

Pt = Z0I
2
0

4π

1

2

∫ 2π

0

1 + cos 2q

q
dq + Z0I

2
0

4π

∫ 2π

0

1

q
dq − Z0I

2
0

4π
2

∫ 2π

0

cos q

q
dq

= Z0I
2
0

4π

1

2

∫ 2π

0

1 + cos 2q

q
dq + Z0I

2
0

4π
2

∫ 2π

0

1

q
dq
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− Z0I
2
0

4π

∫ 2π

0

1

q
dq − Z0I

2
0

4π
2

∫ 2π

0

cos q

q
dq

= Z0I
2
0

4π
2

∫ 2π

0

1 − cos q

q
dq − Z0I

2
0

4π

1

2

∫ 2π

0

1 − cos 2q

q
dq, (5.57)

and finally, upon substitution of 2q = v in the second integration, we obtain the desired
equation:

Pt = Z0I
2
0

4π
2

∫ 2π

0

1 − cos q

q
dq − Z0I

2
0

4π

1

2

∫ 4π

0

1 − cos v

v
dv. (5.58)

With Cin(z) = ∫ z

0
1+cos t

t
dt being tabulated in [2], we can write the above equation as

Pt = Z0I
2
0

8π2
[4πCin(2π) − πCin(4π)]

= Z0I
2
0

8π2
[4π · 2.4376543 − π · 3.1143565] = Z0I

2
0

8π2
6.64π. (5.59)

Substitution of equations (5.51) and (5.59) in equation (5.16) gives the directivity
function

D(ϑ) = P(ϑ)

P − t/4π
= 1

1.66

[
cos(π cos ϑ) + 1

sin ϑ

]2

, (5.60)

and the directivity is found as

D = [D(ϑ)]max = D
(
ϑ = π

2

)
= 4

1.66
= 2.41. (5.61)

Indeed, the directivity of a full-wave dipole antenna is substantially larger than the
directivity of an elementary dipole (D = 1.5) and of a half-wave dipole antenna (D =
1.64).

5.2.1.3 3
2 -Wavelength Antenna

For 2l = 3
2λ0, equation (5.36) reduces to

P(ϑ) = Z0I
2
0

8π2

[
cos

(
3π
2 cos ϑ

)
sin ϑ

]2

. (5.62)

The maximum is found for ϑ ≈ 43◦. Figure 5.8 shows the normalized radiation pattern
in a plane ϕ = constant.

For a dipole antenna having a length of one-and-a-half wavelengths, the radiation
is directed mainly in ‘conical rings’ along the dipole axis. This makes the practical
application of such an antenna limited. Therefore, we will not calculate the gain of this
antenna.

The reason we have shown the radiation pattern cut is to demonstrate the effect of
having a dipole length exceeding one wavelength, that is the appearance of ‘elevational
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Figure 5.8 Polar radiation pattern cut in a plane ϕ = constant on a linear amplitude scale for a
3
2 -wavelength dipole antenna.
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Figure 5.9 Current densities over wire antennas of different lengths. (a) Half-wave dipole antenna.
(b) Full-wave dipole antenna. (c) 3

2 -wave dipole antenna.

lobes’ in the radiation pattern. To explain this phenomenon, we have to take a closer look
at the current density along the wire antenna. This is done in Figure 5.9 for a number of
antenna lengths.

We know that the source of electromagnetic radiation is acceleration or deceleration of
charge. In Figure 5.9(a) and (b), sources of radiation are the dipole excitation point and
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the two end-points. The figure shows that the current densities at these source points are
all in phase and thus add up to a contribution (radiation) perpendicular to the wire axis.

In Figure 5.9(c) the antenna length has exceeded a wavelength and additional sources
(areas of acceleration or deceleration) are created. Now, all the sources are not in phase
and a more complicated pattern of directions of constructive and destructive interference
is created, resulting in the creation of elevational lobes, see Figure 5.8. We will learn
more about this phenomenon in Chapter 8 where we will discuss array antennas.

We have to bear in mind that antennas – including dipole antennas – are always used
for frequency bands rather than single frequencies. This means that we have to be careful
in choosing the dipole length. If we design a full-wave dipole, we must prevent the
length getting larger than a wavelength in the frequency band being used. If we fix
the length for the longest wavelength (smallest frequency), we will see the appearance of
elevational lobes at the highest frequency.

5.2.2 Input Impedance

We have seen – in discussing the elementary dipole – that, based on the total transmitted
power, we can calculate the radiation resistance. In doing so we neglect the antenna
impedance having a reactive part. For a more accurate calculation of the antenna input
impedance, the current distribution needs to be known more accurately than the, for now,
assumed sinusoidal distribution. The calculation of an accurate, complex dipole antenna
input impedance is, however, beyond the scope of this book (and most antenna textbooks).
For antenna lengths not exceeding a wavelength, the real part of the input impedance will
be close to the radiation resistance as calculated from the total radiated power. For antenna
lengths in the range of half a wavelength, excellent approximate, closed-form equations
do exist [3].

We will derive the radiation resistance for a half-wave dipole antenna and for a full-
wave dipole antenna. Due to the limited practical use of a 3

2 -wave dipole antenna we will
not calculate its radiation resistance. The radiation resistance will be (almost) equal to the
real part of the antenna input impedance.

5.2.2.1 Radiation Resistance Half-Wavelength Antenna

We find the radiation resistance by substituting the total radiated power in equation (5.21).
So for the half-wave dipole antenna, the radiation resistance is found to be

RA = Pt

1
2I 2

0

=
Z0I2

0
8π

· 2.44
1
2I 2

0

= 2.44 · 120π

4π
= 73.2 	, (5.63)

since Z0 = 120π	.
This antenna impedance is close to the 75 	 of the standard RG-6 coaxial cable. The

reflection coefficient upon connecting a half-wave dipole antenna to a RG-6 coaxial cable
would be 0.012, which is negligible. So with the half-wave dipole antenna we have
maintained the favorable near-omnidirectional radiation characteristics of an elementary
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dipole antenna but we have also created an input impedance that allows an easy application
of the antenna in practice. As said before, the half-wavelength dipole antenna is a very
much used antenna. The reasons therefore have just been given.

5.2.2.2 Input Impedance Half-Wavelength Antenna

The input impedance of a wire antenna may be calculated using the induced EMF method.
A fitting method applied to a first fitting derived by C.T. Tai gives, for dipole lengths
around half a wavelength [3],

Zin = [
122.65 − 204.1k0l + 110 (k0l)

2
]

− j

[
120

(
ln

2l

a
− 1

)
cot k0l − 162.5 + 140k0l − 40 (k0l)

2

]

for (1.3 ≤ k0l ≤ 1.7) and (0.001588 ≤ a/λ0 ≤ 0.009525) , (5.64)

where a is the radius of the wire.
For 2l = λ0/2 and a = 0.005λ0, equation (5.64) gives Zin = (73.46 − j15735) 	. We

see that the real part of the input impedance is indeed well approximated by our earlier
radiation resistance calculation.

5.2.2.3 Radiation Resistance Full-Wavelength Antenna

The real part of the input impedance for a center-fed, full-wave dipole antenna is infinite
if the wire is perfectly electrically conducting or very large for a non-perfectly-conducting
wire, since the current density is (approaching) zero at the center, see Figure 5.9(b). By
feeding at a current density maximum, see Figure 5.10, we can calculate the radiation
resistance by substituting equation (5.59) in equation (5.21)

RA = Pt

1
2I 2

0

=
Z0I2

0
8π

· 6.64
1
2I 2

0

= 199.2 	, (5.65)

5.3 Printed Monopole and Inverted-F Antennas

In this section we will be using the commercially available software package Microwave
Studio® from Computer Simulation Technology [4], CST-MWS. CST-MWS is a spe-
cialist tool for the three-dimensional electromagnetic simulation of high frequency (HF)
components. It enables the fast and accurate analysis of high frequency devices such as
antennas, filters, couplers, planar and multi-layer structures, and system integrity (SI) and
electromagnetic compatibility (EMC) effects. The software allows us to switch between
different important methods for antenna simulation, among others the finite integration
technique (FIT), including time domain, finite element method (FEM) and method of
moments (MoM). We will be using the FIT transient and frequency domain solvers for
designing printed monopole antennas and for designing an inverted-F antenna (IFA).
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Figure 5.10 Current densities over full-wave, wire antenna, excited at a current density maximum.

5.3.1 Application of Theory

We will now apply what we have learnt about dipole antennas to design practical
dipole-like antennas. First we will design a printed monopole antenna followed by the
design of a so-called inverted-F antenna (IFA). Then we will design an ultra wideband
(UWB) monopole antenna and a miniature monopole antenna with cable current
suppression means. All antennas will be made in microstrip or coplanar waveguide
(CPW) technology and may be integrated on a printed circuit board (PCB) of a mobile
communications device.

We will not perform the designs by going into the mathematical details. Instead, we
will use the found relationships between dipole antenna dimensions and characteristics to
input an initial design into CST-MWS. Through analyzing this design and – based on the
analysis results and the mentioned relationships – fine tuning some dimensions, we will
obtain our final design in a limited number of iterations.

The basis of the printed monopole antennas and the inverted-F antenna is the monopole
antenna. A monopole antenna is one half of a dipole antenna, placed above a perfect
electric conducting (PEC) ground plane, see Figure 5.11(a).

The fields above the PEC ground may be found from the equivalent dipole antenna in
free space shown in Figure 5.11(b). This equivalent dipole antenna consists of the original
monopole antenna and its image in the PEC ground plane. For a quarter-wave (l = λ

4 )
monopole antenna, the fields above the ground plane are identical to those of the free
space half-wavelength (2l = λ

2 ) dipole antenna. The input impedance of the quarter-wave
monopole antenna is half that of the half-wave dipole antenna. The directivity of the
monopole antenna is twice that of the dipole antenna.

Quarter-wave monopole antennas used to be popular in previous generations of mobile
phones; nowadays IFA and planar IFA (PIFA) structures are being employed.
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Figure 5.11 Monopole antenna. (a) Monopole over PEC. (b) Equivalent dipole in free space.

5.3.2 Planar Monopole Antenna Design

For a practical implementation of the monopole antenna, we first need to replace the infi-
nite ground plane by a finite one. Then, for integration in a PCB in microstrip technology,
we need to transfer the wire monopole that is perpendicular to the (now) finite ground
plane into a planar structure as shown in Figure 1.9(a) and Figure 5.12(a).

The strip monopole antenna is an extension of a 50 	 microstrip transmission line
beyond the rim of the ground plane. The excitation of the monopole antenna is at the rim,
see Figure 5.12(b).

Another way of viewing this printed monopole antenna is regarding the structure as an
asymmetrically driven strip dipole antenna. The strip monopole antenna is one of the arms

Wgnd

Ignd

W

(a) (b)

d

l

Figure 5.12 Printed monopole antenna. (a) Microstrip excited printed monopole antenna. (b) Dis-
crete port excited printed monopole antenna.
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of the asymmetrically driven strip dipole antenna, the ground plane forming the other arm.
Therefore, the ground plane length should not exceed a quarter of a wavelength at the
desired resonance frequency. The length of the strip monopole should be a quarter of a
wavelength at the desired resonance frequency. Although the dielectric of the PCB does
influence the wavelength, the free space quarter wavelength will be a good starting point
in designing the printed monopole antenna.

The width of the strip will be dictated by the microstrip transmission line. We want this
transmission line to have a characteristic impedance of 50 	. If we fine tune the monopole
antenna to having an input impedance of 50 	 at the desired frequency, the length of the
microstrip transmission line will have no influence on the antenna characteristics and will
not form part of the antenna.

To design a microstrip transmission line of a desired characteristic impedance, we
choose the width of the strip W as [1]

W

d
=

⎧⎪⎨
⎪⎩

8eA

e2A−2
if W

d
< 2,

2
π

[
B − 1 − ln (2B − 1) + εr−1

2εr

{
ln (B − 1) + 0.39 − 0.61

εr

}]
if W

d
> 2,

(5.66)

where d is the thickness of the dielectric, εr is the relative permittivity of the dielectric
and [1]

A = Z0

60

√
εr + 1

2
+ εr − 1

εr + 1

(
0.23 + 0.11

εr

)
, (5.67)

B = 377π

2Z0
√

εr

. (5.68)

Z0 in equations (5.67) and (5.68) is the characteristic impedance of the microstrip trans-
mission line. Transmission line theory is explained in Appendix F.

We now start with the design of a printed monopole antenna, resonant at a frequency
of 2.45 GHz.

The PCB material will be 1.6 mm thick FR4 having a relative permittivity εr = 4.28
and a loss tangent tan δ = 0.016. Substituting Z0 = 50 	, d = 1.6 mm and εr = 4.28 in
equations (5.66)–(5.68) gives a microstrip transmission line width of W = 3.1 mm.

We choose the PCB to have dimensions 8 cm × 4 cm and take for the initial length of
the strip monopole l = λ0

4 = 31 mm. In the fine tuning process we will probably need to
shorten this length to account for the wavelength decrease due to the dielectric. For the
reasons mentioned before we choose the length of the ground plane lgnd to be equal to
30 mm. The metal layers will be copper with a thickness of 70 μm.

After launching CST-MWS, see Figure 5.13, and choosing an appropriate template,
that, among others, sets the correct boundary conditions (for this example, we opt for
antenna, mobile phone, see Figure 5.14), we input the antenna structure, see Figure 5.15.
We select the frequency range and set field monitors, see Figure 5.16 and perform an
adaptive (frequency domain) analysis.

The reflection coefficient as a function of frequency is shown in Figure 5.17 and the
radiation pattern at 2.45 GHz is shown in Figure 5.18.
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Figure 5.13 Drawing a printed monopole antenna in CST-MWS. Launching CST-MWS.

Figure 5.14 Drawing a printed monopole antenna in CST-MWS. Choosing a template.
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Figure 5.15 Drawing a printed monopole antenna in CST-MWS. Drawing the structure.

Figure 5.16 Drawing a printed monopole antenna in CST-MWS. Choosing the frequency range
and setting the field monitors.



Dipole Antennas 103

Figure 5.17 Analysis results of initial printed monopole antenna design. Reflection amplitude as
a function of frequency.

Figure 5.18 Analysis results of initial printed monopole antenna design. Radiation pattern at
2.45 GHz.

Figures 5.17 and 5.18 show that it is behaving like a dipole antenna and that the antenna
is resonant at a frequency f = 1.79 GHz. The resonance frequency is too low. Therefore
we need to decrease the monopole length and possibly the ground plane length also.

After a few iterations we find that for a dipole length of l = 21 mm and a ground plane
length of lgnd = 20 mm, we get a resonance and dipole antenna behavior at 2.45 GHz as
desired, see Figures 5.19 and 5.20.
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Figure 5.19 Analysis results of final printed monopole antenna design. Reflection amplitude as a
function of frequency.

Figure 5.20 Analysis results of final printed monopole antenna design. Radiation pattern at
2.45 GHz.
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Figure 5.21 Current density analysis results of the final printed monopole antenna.

Finally, Figure 5.21 shows the surface current density on the antenna structure. The
Figure shows that the ground plane is wide enough to avoid the creation of additional
radiation from the corners.

5.3.3 Printed UWB Antenna Design

High data rate wireless communications need wide frequency bandwidths. In the ultra
wideband (UWB) frequency band from 3.1 GHz to 10.6 GHz, information may be spread
over a large bandwidth at low power levels, thus creating the possibility of sharing the
spectrum with other users. The dipole antenna offers a good starting point for developing
a compact antenna having an impedance bandwidth, wide enough to cover the whole
frequency band from 3.1 GHz to 10.6 GHz.

By thickening the arms of a dipole antenna, current may travel over different paths of
different lengths, thus increasing the bandwidth. The current distribution is then – unlike
for a thin dipole antenna – no longer sinusoidal. While this hardly affects the radiation
pattern of the antenna, it severely influences the input impedance [5]. The band-widening
effect may be further exploited by shaping the thick dipole arms into cones or spheres
[6]. Figure 5.22 shows the evolution from a thin-wire dipole antenna to a spherical-arm
dipole antenna [7].

For practical applications we will transform the dipole with two spherical arms into a
planar version that may be integrated into or onto a printed circuit board (PCB). Based
on a planar stripline excited UWB antenna [8], a microstrip excited pseudo-monopole as
shown in Figure 5.23 has been devised [7].

The antenna is basically a dipole antenna consisting of two planar, circular arms.
The upper arm, on the top side of the PCB, is connected to the microstrip transmission

line trace. The lower arm, on the underside of the PCB is integrated into a small ground
area, together providing the ground plane for the microstrip trace.

The functioning of the antenna may be explained as being a dipole antenna for the
frequency for which the antenna is half a wavelength long and as being a dual tapered
slot antenna for higher frequencies. The latter is obvious from the current densities as
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Figure 5.22 Evolution from a narrowband, thin-wire dipole antenna to a broadband, spherical
dipole antenna.
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t
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Figure 5.23 Microstrip excited UWB antenna.

shown in Figures 5.24 and 5.25. Figure 5.24 shows the surface current density at 3 GHz
for a planar circular dipole antenna resonant around that frequency.

We see that current is flowing along the whole metallic perimeter of the antenna, having
a maximum in between the discs and a minimum on top of the upper disc and at the
bottom of the ground plane. The antenna thus acts as a half-wave dipole antenna.

The surface current density for the same antenna structure, analyzed at 7 GHz is shown
in Figure 5.25. Again we see the current density concentrated at the rims of the discs, but
now the current attenuates when traveling over the rim. Now the antenna structure may
be seen as consisting of two flared notch antennas, see Figure 5.26.

The equivalence is best for the current density disappearing at the indicated positions.
The radiation of the two equivalent flared notch antennas (of which one is shown in
Figure 5.26) is in the same direction as that of the equivalent half-wave dipole antenna at
lower frequencies. For increasing frequencies, the flared notch antenna equivalence still
holds, but the current density attenuates ‘faster’, going over the rims of the discs.

So, the UWB antenna starts at the lower frequency bound as a half-wave dipole antenna
and transforms into a dual flared notch antenna going to higher frequencies.
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Figure 5.24 Surface current density at 3 GHz for a 19 mm diameter printed circular dipole antenna.

Figure 5.25 Surface current density at 7 GHz for a 19 mm diameter printed circular dipole antenna.
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(a) (b)

Figure 5.26 Printed UWB antenna (a) and equivalent flared notch antenna for the right-hand side
of the structure (b).

Since the structure as shown in Figure 5.23 only has a limited number of parameters
to tune once the starting frequency is known, it will be necessary to use the microstrip
transmission line width in the structure to tune the antenna input impedance. As a con-
sequence, this section of microstrip transmission line has become part of the antenna. A
better solution is provided by using a microstrip balun to transfer the unbalanced signal at
the microstrip input to a balanced signal at the two ‘dipole’ arms of the antenna. Instead
of using a smoothly tapered balun, we add a piece of 50 	 microstrip transmission line
(H4) to create a staggered balun, see Figure 5.27.

D
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Ws

Ws2

W
t

L

H3

Figure 5.27 Printed UWB antenna with staggered balun.
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Through varying the different dimensions, we obtain satisfactory results for the dimen-
sions and parameters stated in Table 5.1. The thickness of the copper is 70 μm.

The structure is shown in Figure 5.28. The reflection as a function of frequency is
shown in Figure 5.29.

Figures 5.30–5.33 show the radiation patterns at 3 GHz, 6 GHz, 7 GHz and 10 GHz,
respectively.

Table 5.1 Dimensions and parameters of
printed UWB antenna

Dimension/Parameter Value

D 19 mm
H1 14.38 mm
H2 4.62 mm
H3 1.51 mm
H4 15.0 mm
L 48.0 mm
W 22.0 mm
Ws 1.44 mm
Ws2 3.1 mm
t 1.6 mm
εr 4.28
tan δ 0.016

Figure 5.28 Printed UWB antenna.
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Figure 5.29 Reflection as a function of frequency for the antenna shown in Figure 5.28.

Figure 5.30 Radiation pattern at 3 GHz for the antenna shown in Figure 5.28.
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Figure 5.31 Radiation pattern at 6 GHz for the antenna shown in Figure 5.28.

Figure 5.32 Radiation pattern at 7 GHz for the antenna shown in Figure 5.28.
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Figure 5.33 Radiation pattern at 10 GHz for the antenna shown in Figure 5.28.

The radiation patterns at 3 GHz and to a slightly lesser extent at 6 GHz show a ‘dipole-
like’ behavior as was to be expected. At frequencies above 6 GHz, we see the occurrence
of elevational lobes. For those frequencies, the ‘dipole’ length exceeds one wavelength
leading to the occurrence of multiple lobes. This is in agreement with what we have seen
in Section 5.2.1.3.

In the analysis shown we have assumed that the relative permittivity of the substrate
was εr = 4.28. This value is based on the measurement of one sample of FR4, a standard
PCB material.5 FR4, however, is not a dedicated microwave laminate, which is obvious
from the rather high loss tangent. Moreover, the relative permittivity is not well defined
and may differ from batch to batch. The reason for using FR4 instead of a dedicated
microwave laminate is because of the low cost and the ease of photo-etching copper
structures.

At this point it is therefore wise to perform a tolerance analysis with respect to the
relative permittivity of the substrate. Within CST Microwave Studio® we make use of
the property to perform a parameter sweep. Figure 5.34 shows the reflection as a function
of frequency for values of the relative permittivity between 3 and 5.

We see that in the frequency band of interest (3.1–10.6 GHz) the reflection level stays
under −10 dB for all values of the relative permittivity. Therefore we may conclude that
it is permitted to make this antenna on FR4 regardless of its not-well-specified relative
permittivity.

5 A list of relative permittivities for different materials is given in Appendix D.
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Figure 5.34 Reflection as a function of frequency for the antenna shown in Figure 5.28 for
different values of the substrate’s relative permittivity.

5.3.4 Miniature Monopole with Cable Current Suppression

In the next design case we will look at the influence of a coaxial cable connected to a
small monopole antenna and means to suppress this influence.

We start with a coplanar waveguide (CPW) excited monopole antenna on FR4, see
Figure 5.35.

A coplanar waveguide consists of a metal strip, having width W , in between two
insulated ground planes, separated a distance S, on top of a dielectric sheet, see Figure 5.35
and Figure 5.36 for a cross-sectional view.

The advantages of CPW are that (active) devices can be mounted on top of the circuit
(as in microstrip) and that only one side of the dielectric sheet needs to be patterned.
An extensive treatment of CPW transmission lines is beyond the scope of this book.
Analytical equations for the characteristic impedance can be found in Appendix G.

The dimensions and parameters of a CPW excited printed monopole antenna, resonant
at 2.45 GHz are stated in Table 5.2, with reference to Figure 5.35. The thickness of the
copper layer is 70 μm.

Next, a coaxial cable is attached to the antenna, as shown in Figure 5.37. A copper
block is attached to the rim of the PCB, mimicking a sub miniature A (SMA) connector.
The relevant dimensions and parameters are shown in Figure 5.38.

The radii of the coaxial cable are, see Figure 5.38(a), a = 0.375 mm, b1 = 1.5 mm
and b2 = 1.75 mm. The ‘SMA mimicking’ block dimensions are, see Figure 5.38(b),
WS = 6.0 mm and dS = 2.0 mm. In Figure 5.39 we show the reflection coefficient as a
function of frequency for different lengths of the connected coaxial cable.
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Figure 5.35 CPW excited printed monopole antenna.
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Figure 5.36 Coplanar waveguide, cross-sectional view.

Table 5.2 Dimensions and parameters of CPW
excited printed monopole antenna

Dimension/Parameter Value

L 48.0 mm
L1 27.0 mm
L2 15.0 mm
W 10.0 mm
W1 6.0 mm
W2 2.0 mm
gap1 1.0 mm
gap2 1.0 mm
th 1.6 mm
εr 4.28
tan δ 0.016
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Figure 5.37 CPW excited printed monopole antenna with coaxial cable attached.
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Figure 5.38 Cross section of coaxial waveguide (a) and SMA-mimicking copper block (b).

The figure shows that the resonance frequency of the structure decreases with increasing
coaxial cable length. This phenomenon can be explained by taking a closer look at the
current densities over the metal surfaces of the structure. As shown in Figure 5.40, currents
flowing on the CPW ground planes of the printed monopole antenna will continue at the
outer surface of the coaxial cable’s outer conductor.

Next to these currents, a part of the return current flowing on the inside of the coaxial
cable’s outer conductor passes through the CPW ground planes and will also flow on the
outside surface of the coaxial cable’s outer conductor. These two current contributions



116 Antenna Theory and Applications

Figure 5.39 Reflection as a function of frequency for different coaxial cable lengths.

printed monopole

ground plane

inner coaxial conductor

outer coaxial conductor

Figure 5.40 Current flowing on the metal surfaces of a printed monopole antenna and a connected
coaxial cable.
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Figure 5.41 Current flowing on the metal surfaces of a printed monopole antenna with current
blocking slots and a connected coaxial cable.

will add to the radiated field and will influence both the radiation pattern and the input
impedance if they are strong enough. So, the well-known shielding effect of the outer
conductor of a coaxial cable is made less effective by connecting the cable to the printed
monopole antenna.

A means of suppressing these coaxial cable current effects can consist of positioning
the connecting coaxial cable perpendicular to the printed monopole antenna, so that the
radiation by the cable currents will be in the orthogonal (cross) polarization. Another
means is to embed (part) of the coaxial cable in a field-absorbing material to suppress the
cable current radiation contribution. Both of these means, however, suppress the effects
of cable current instead of suppressing the source itself. A means of suppressing the
current flow on the coaxial cable’s outer surface is to introduce ‘current blocking slots’
in the CPW ground planes as shown in Figure 5.41.

The current blocking slots prevent the current passing from the ground planes to the
outer surface of the coaxial cable’s outer conductor.

The structure as shown in Figure 5.35 now changes into the one shown in Figure 5.42.
The current blocking slot positions and widths must be such that a direct galvanic

contact between the CPW ground planes and the outer surface of the coaxial cable’s outer
conductor is avoided. Within these constraints the structure is optimized for resonance at
2.45 GHz by iteratively changing the various antenna dimensions using CST Microwave
Studio®, starting with a quarter free-space wavelength monopole length. The final results
are given in Table 5.3.

The structure as analyzed in CST Microwave Studio® is shown in Figure 5.43. In
Figure 5.44 the simulated reflection as a function of frequency is shown for several
coaxial cable lengths.
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Figure 5.42 CPW excited printed monopole antenna with current blocking slots in the ground
planes.

Table 5.3 Dimensions and parameters of CPW excited
printed monopole antenna with current blocking slots

Dimension/Parameter Value

L 66.0 mm
L1 35.0 mm
L2 25.0 mm
L3 20.0 mm
W 10.0 mm
W1 6.0 mm
W2 2.0 mm
gap1 1.0 mm
gap2 1.0 mm
gap3 1.0 mm
d 1.0 mm
th 1.6 mm
εr 4.28
tan δ 0.016

The figure shows how the current blocking slots prevent current passing from the CPW
ground planes to the outer surface of the coaxial cable’s outer conductor. The length of
the coaxial cable no longer influences the input impedance and thus the reflection as a
function of frequency remains more or less the same for different lengths of coaxial cable.

For the structure without the blocking slots, the coaxial cable becomes part of the
antenna. In fact, in that situation we are dealing with an asymmetrically excited dipole
antenna. The printed monopole is one of the asymmetric dipole arms, the ground with
the attached coaxial cable forms the other arm. In agreement with this reasoning we see
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Figure 5.43 CPW excited printed monopole antenna with current blocking slots with attached
coaxial cable.

Figure 5.44 Reflection as a function of frequency for the structure shown in Figure 5.43 for
several lengths of coaxial cable.
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that if we lengthen the coaxial cable, that is lengthen the dipole antenna, the resonance
frequency decreases, see Figure 5.39.

5.3.5 Inverted-F Antenna Design

By bending the printed monopole arm by a 90 degree angle, making it run parallel to
the PCB ground plane, the antenna structure may be made more compact. The effect
of placing a large part of the printed monopole arm parallel to the ground plane is the
addition of capacitance to the antenna input impedance. To compensate for this additional
capacitance, an (inductive) short-circuited transmission line stub is added to the structure,
see Figure 5.45. The transmission line is formed by the strip of width Ws2 and the ground
plane. The short circuit is formed by the vertical strip that is connected to the ground plane
by a via.

For resonance we choose the IFA length (H3 + L) equal to a quarter of the wavelength.
For the design of a 900 MHz IFA, we therefore choose H3 + L = 83 mm. We choose, more
or less arbitrarily, H3 = 8 mm, so that L = 75 mm. The PCB is made of copper clad FR4,
having εr = 4.28 and tan δ = 0.016. The thickness is d = 1.6 mm and the copper traces
are 70 μm thick. For convenience all strip widths, except for the microstrip excitation
line, are chosen to be equal. The width of the microstrip transmission line is chosen as
Ws = 3.1 mm, the width for creating a 50 	 characteristic impedance. These and the other
dimensions and parameters of the initial IFA design are shown in Table 5.4.

The structure is shown in Figure 5.46.
The reflection as a function of frequency is shown in Figure 5.47.
The figure shows that the reflection is minimal at around 900 MHz, but that the

impedance level can be improved. A perfect, real, near 50 	 input impedance would
have resulted in a much lower reflection at the desired resonance frequency. Therefore
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Figure 5.45 Layout of an inverted-F antenna (IFA) in microstrip technology.
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Table 5.4 Dimensions and parameters of initial
microstrip excited IFA design

Dimension/Parameter Value

L 75.0 mm
H1 40.0 mm
H2 21.0 mm
H3 8.0 mm
H4 6.0 mm
H5 2.0 mm
W1 40.0 mm
W2 73.0 mm
Ws 3.1 mm
Ws2 3.0 mm
a 1.0 mm
d 1.6 mm
εr 4.28
tan δ 0.016

Figure 5.46 Microstrip excited inverted F antenna (IFA). Initial design.
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Figure 5.47 Reflection as a function of frequency for the antenna shown in Figure 5.46.

we take a closer look at the input impedance of the structure. Figures 5.48 and 5.49 show
the real part and the imaginary part of the input impedance as a function of frequency,
respectively.6

The impedance curves show that the real part of the input impedance is too high and
that the input impedance is inductive. To correct for this, we have to change the two trans-
mission line sections in the IFA structure. These are the part to the right of the microstrip
excitation, that is the two-strip transmission line terminated in an open circuit and the
part to the left of the microstrip excitation, that is the two-strip transmission line termi-
nated in a short circuit. To change the impedance of an open- or short-circuited section
of transmission line we must change either the length or the characteristic impedance
or both, see Appendix F. Since the added lengths H3 and L have to remain constant
for fixing the minimum of the reflection at 900 MHz, we have opted for increasing the
distance between the horizontal strip of the IFA and the ground plane, thus changing the
characteristic impedance. By keeping H3 + L fixed, we have also changed the length of
the open-circuited two-strip transmission line. After a few iterations, we have come up
with the structure shown in Figure 5.50. The dimensions, with reference to Figure 5.45,
are given in Table 5.5.

The simulated reflection as a function of frequency for this structure is shown in
Figure 5.51. The real and imaginary parts of the input impedance as a function of fre-
quency are shown in Figures 5.52 and 5.53, respectively.

6 An experienced, or what we might now call an ‘old school’, microwave engineer would have used a Smith chart
here. The discussion of the Smith chart for this one example only would be too cumbersome. Therefore we look
at the real and imaginary parts of the input impedance as a function of frequency separately here. For a discussion
of the Smith chart, the reader is referred to [1].
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Figure 5.48 Real part of the input impedance as a function of frequency for the antenna shown
in Figure 5.46.

Figure 5.49 Imaginary part of the input impedance as a function of frequency for the antenna
shown in Figure 5.46.
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Figure 5.50 Microstrip excited IFA. Redesign.

Table 5.5 Dimensions and parameters of
microstrip excited IFA redesign

Dimension/Parameter Value

L 65.0 mm
H1 40.0 mm
H2 33.0 mm
H3 20.0 mm
H4 10.0 mm
H5 2.0 mm
W1 40.0 mm
W2 75.0 mm
Ws 3.3 mm
Ws2 3.0 mm
a 1.0 mm
d 1.6 mm
εr 4.28
tan δ 0.016
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Figure 5.51 Reflection as a function of frequency for the IFA shown in Figure 5.50.

Figure 5.52 Real part of the input impedance as a function of frequency for the IFA shown in
Figure 5.50.
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Figure 5.53 Imaginary part of the input impedance as a function of frequency for the IFA shown
in Figure 5.50.

Figure 5.54 Surface current density at 900 MHz for the IFA shown in Figure 5.50.
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Figure 5.55 Radiation pattern at 900 MHz for the IFA shown in Figure 5.50.

Figure 5.56 Detail of the surface current density at the rear of the IFA shown in Figure 5.50.
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We see that the antenna structure is resonant (imaginary part of the input impedance
equal to zero) at the desired frequency and that the real part of the input impedance
is close to 50 	. The surface current density of the structure at 900 MHz is shown in
Figure 5.54.

The figure shows that current is flowing over the IFA giving rise to a dipole-like
radiation pattern in the y-direction, see Figure 5.55.

The high surface current density on the microstrip trace shown in Figure 5.54 does not
give rise to radiation, since this surface current density is compensated for by a surface
current density on the microstrip ground plane that is concentrated at the strip position
and directed in the opposite direction. This is shown in the detail of the surface current
density at the rear of the antenna in Figure 5.56.

5.4 Problems

5.1 Plot, in a polar plot and on a linear scale, the normalized (power) radiation pattern
of a small, z-directed dipole antenna as a function of ϕ for
(a) ϑ = π

4 ,
(b) ϑ = π

2 .

5.2 The same question as in 5.1, but now plot in a rectangular plot and on a logarithmic
scale.

5.3 The time-averaged radiated power density function of a short (Hertzian) dipole is
given by

S(r) = 1

2

k2
0Z0 (I0l)

2

(4πr)2 sin2(ϑ)ûr , (5.69)

where k0 = ω
√

ε0μ0 is the free space wave number, Z0 =
√

μ0
ε0

is the free space

characteristic impedance, ûr is the unit vector in the radial direction, I0 is the ampli-
tude of the current that is assumed to be constant over the short dipole antenna and
l is the length of the short dipole antenna. ϑ is the angle with respect to the dipole
axis, that we assume to be along the z-axis in a rectangular coordinate system, see
Figure 5.57.
(a) Calculate the total radiated power Pt .
(b) Calculate the normalized radiation pattern and determine the half power

beamwidth.
(c) Calculate the directivity function and the directivity of this antenna.
(d) When the power accepted at the clamps of the antenna is a factor 1.001 higher

than the total radiated power, what is the gain of the antenna?
(e) What is, in general, the reason that the total radiated power is less than the power

accepted at the clamps of an antenna?

5.4 The far magnetic field of an elementary z-directed dipole antenna is given by equation
(5.11)

H = jk0e
−jk0r

4πr
I0l sin ϑ ûϕ. (5.70)

Explain why waves travel away from the source.
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Figure 5.57 Short dipole antenna.

5.5 What current is needed to radiate 1 kW in total using a small dipole antenna having
a length l = 0.01λ0?

5.6 What current is needed to radiate 1 kW in total using a half-wave dipole antenna?

5.7 Draw, in the same rectangular plot, on a logarithmic scale, the normalized (power)
radiation pattern of
(a) an infinitesimal dipole antenna,
(b) a half-wave dipole antenna,
(c) a one-wavelength dipole antenna,
(d) a 3

2 -wavelength antenna,
for ϕ = 0 and −π

2 < ϑ < π
2 and determine from this graph the 3 dB beamwidths.

5.8 Plot the real and imaginary parts of a wire dipole antenna input impedance as a
function of k0l for 1.3 < k0l < 1.7 and a = 0.005λ0. Remember that l is the half-
length of the dipole antenna.

5.9 At what length 2l is the dipole antenna from problem 5.8 resonant?
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6
Loop Antennas

A loop antenna consists of a conductive wire, usually bent into a circular form, although other forms
are possible. The small loop antenna characteristics are very similar to those of the small dipole
antenna. The small loop antenna will be shown to be equivalent to an infinitesimal magnetic dipole.
Loop antennas are denoted small or large, depending on the size of the circumference with respect
to the wavelength. The derivation of the radiated fields of the loop antenna could be performed in
a way similar to the procedure we used for calculating these fields for an infinitesimal z-directed
current element: Obtain the vector potential for an infinitesimal, ϕ-directed current element and
then generalize to a larger loop with an assumed current density. However, since we have already
derived expressions for the far magnetic and electric fields for arbitrary current distributions, we
will derive the far-field for a general loop, having a uniform current distribution, and then specify
for small loops.

6.1 General Constant Current Loop

For the loop analysis we will consider a filamentary, circular wire loop of radius a in the
xy-plane of a rectangular coordinate system, see Figure 6.1.

The radius can have any value, but we do assume the current to be uniform and in-
phase over the loop since this simplifies the calculations considerably. Nevertheless, the
loop with uniform current is valuable, for both small and large loops:

• For small loops, that is for circumferences smaller than a tenth of the free space
wavelength, a constant current is a good approximation.

• For larger loops, a more realistic current density assessment would be in a cosh(l)-form
(not a sinusoidal form [1]), where l is the distance parameter along the loop. A large
loop supporting a uniform current may be realized though by subdividing the loop into
smaller wire segments and feeding each segment (in amplitude and phase) in such a
way that the amplitude and phase over the loop effectively remains constant [2].

Antenna Theory and Applications, First Edition. Hubregt J. Visser.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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Figure 6.1 Wire loop of radius a, supporting a uniform, in-phase current.

6.1.1 Radiation

For the loop shown in Figure 6.1, we assume a (uniform) current density

Je (r0) = I0δ

(√
x2

0 + y2
0 − a

)
δ (z0) ûϕ0 . (6.1)

The far-fields for an arbitrary current density are calculated with equations (4.65)
and (4.78)

H = −jk0e
−jk0r

4πr
ûr ×

∫∫∫
V0

Je (r0) ejk0ûr ·r0dV0, (6.2)

E = Z0H × ûr , (6.3)

where Z0 = √
μ0/ε0 is the characteristic impedance of free space.

The integration over the source volume reduces to a contour integral over the loop:

H = −jk0e
−jk0r

4πr
I0ûr ×

∫
l

ûϕ0e
jk0ûr ·r0dl = −jk0e

−jk0r

4πr
aI0ûr ×

∫ 2π

ϕ0=0
ûϕ0e

jk0ûr ·r0dϕ0,

(6.4)

where use has been made of, see Figure 6.1, dl = adϕ0. To carry out the dot product in
the exponent within the integral of equation (6.4), we first express ûr and r0 in rectangular
unit vectors.

ûr = sin ϑ cos ϕûx + sin ϑ sin ϕûy + cos ϑ ûz, (6.5)

and, see Figure 6.1,

r0 = a cos ϕ0ûx + a sin ϕ0ûy, (6.6)



Loop Antennas 133

so that

ûr · r0 = a cos ϕ cos ϕ0 sin ϑ + a sin ϕ sin ϕ0 sin ϑ = a cos (ϕ − ϕ0) sin ϑ. (6.7)

Substitution of equation (6.7) in equation (6.4) results in

H = jk0e
−jk0r

4πr
aI0ûr ×

∫ 2π

ϕ0=0
ûϕ0e

jk0a cos(ϕ−ϕ0) sin ϑdϕ0. (6.8)

Since the structure being analyzed is rotationally symmetric around the z-axis in
Figure 6.1 and thus ϕ-independent, we may substitute–without loss of generality – ϕ = 0
and obtain

H = jk0e
−jk0r

4πr
aI0ûr ×

∫ 2π

ϕ0=0
ûϕ0e

jk0a cos ϕ0 sin ϑdϕ0. (6.9)

With the relation between cylindrical and rectangular coordinates given by [3]

ûρ = cos ϕûx + sin ϕûy, (6.10)

ûϕ = − sin ϕûx + cos ϕûy, (6.11)

ûz = ûz, (6.12)

we may express ûϕ0 in equation (6.9) as ûϕ0 = − sin ϕ0ûx + cos ϕ0ûy , so that

H = −jk0e
−jk0r

4πr
aI0ûr ×

{
−ûx

∫ 2π

0
sin ϕ0e

jk0a cos ϕ0 sin ϑdϕ0

+ ûy

∫ 2π

0
cos ϕ0e

jk0a cos ϕ0 sin ϑdϕ0

}
. (6.13)

The first integral on the right-hand side of equation (6.13) equals zero since the kernel
of the integral is an odd function of ϕ0.1 The kernel of the second integral is an even
function of ϕ0 so that we find for the far magnetic field

H = 2
−jk0e

−jk0r

4πr
aI0ûr × ûy

∫ π

ϕ0=0
cos ϕ0e

jk0a cos ϕ0 sin ϑdϕ0

= 2
−jk0e

−jk0r

4πr
I0ûy

∫ π

ϕ0− π
2 =0

cos
(
ϕ0 − π

2

)
ejk0a cos(ϕ0− π

2 ) sin ϑd
(
ϕ0 − π

2

)

= −2
−jk0e

−jk0r

4πr
aI0ûr × ûy

∫ π
2

ϕ0=− π
2

sin ϕ0e
−jk0a sin ϕ0 sin ϑdϕ0

= −2
−jk0e

−jk0r

4πr
aI0ûr × ûy

{∫ 0

ϕ0=− π
2

sin ϕ0e
−jk0a sin ϕ0 sin ϑdϕ0

1 a function f (x) is odd if −f (x) = f (−x) or f (x) + f (−x) = 0. The function is even if f (x) = f (−x) or
f (x) + f (−x) = 2f (x).
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+
∫ π

2

ϕ0=0
sin ϕ0e

−jk0a sin ϕ0 sin ϑdϕ0

}

= −2
−jk0e

−jk0r

4πr
aI0ûr × ûy

{
−

∫ − π
2

ϕ0=0
sin ϕ0e

−jk0a sin ϕ0 sin ϑdϕ0

+
∫ π

2

ϕ0=0
sin ϕ0e

−jk0a sin ϕ0 sin ϑdϕ0

}

= −2
−jk0e

−jk0r

4πr
aI0ûr × ûy

{
−

∫ π
2

−ϕ0=0
sin (−ϕ0) e+jk0a sin(−ϕ0) sin ϑd (−ϕ0)

+
∫ π

2

ϕ0=0
sin ϕ0e

−jk0a sin ϕ0 sin ϑdϕ0

}

= −2
jk0e

−jk0r

4πr
aI0ûr × ûy

∫ π
2

0
sin ϕ0

(
e+jk0a sin ϕ0 sin ϑ − e−jk0a sin ϕ0 sin ϑ

)
dϕ0

= 4
k0e

−jk0r

4πr
aI0ûr × ûy

∫ π
2

0
sin ϕ0 sin (k0a sin ϕ0 sin ϑ) dϕ0. (6.14)

In equation (6.14) we may recognize a Bessel function of the first kind and order [1, 4]

J1(x) = 2

π

∫ π
2

0
sin ϑ sin (x sin ϑ) dϑ. (6.15)

Figure 6.2 shows J1(x) vs x for 0 ≤ x ≤ 50.
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Figure 6.2 Bessel function of the first kind, order 1 and argument x for 0 ≤ x ≤ 50.
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Equation (6.14), written in terms of this Bessel function now becomes

H = ûr × ûy

4k0e
−jk0r

4πr
aI0

π

2
J1 (k0a sin ϑ) = ûr × ûy

k0aI0e
−jk0r

2r
J1 (k0a sin ϑ) . (6.16)

Earlier we made the choice to work in the plane ϕ = 0. For ϕ = 0, see Figure 6.1,
ûy = ûϕ . With ûr × ûϕ = −ûϑ , we finally find for the far magnetic field

H = −ûϑ

k0aI0e
−jk0r

2r
J1 (k0a sin ϑ) . (6.17)

The far electric field we find by substitution of equation (6.17) in (6.3). Also using
−ûϑ × ûr = ûϕ results in

E = ûϕ

k0aZ0I0e
−jk0r

2r
J1 (k0a sin ϑ) . (6.18)

The normalized radiation pattern follows from equation (6.18)

F(ϑ) = P(ϑ)

P (ϑ)max

= r2|E|/(2Z0)

r2|E|max/(2Z0)
= J 2

1 (k0a sin ϑ)[
J 2

1 (k0a sin ϑ)
]
max

. (6.19)

Figure 6.3 shows the radiation patterns for a = λ0
20 , for a = λ0

2 and for a = 2λ0.
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Figure 6.3 Normalized (power) radiation patterns for a horizontal, constant current supporting,
loop antenna. Dotted line: a = λ0

20 . Dashed line: a = λ0
2 . Solid line: a = 2λ0.
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The figure shows that for a very small loop, the radiation pattern looks very similar to
that of a vertically directed elementary dipole. We will discuss the similarities between a
small loop and a small dipole in more detail in a subsequent section.

We also see that for larger loops – for which we have to take measures to keep the
current density uniform and in-phase – we get lobes in the forward direction and a sharp
null perpendicular to the loop. This feature makes large loop antennas attractive for
direction finding purposes. It is easier to detect a null than a maximum.

6.1.2 Input Impedance

For calculating the radiation resistance, we need to know the total radiated power Pt . By
using equations (2.8) and (6.18) we calculate Pt as

Pt =
∫ 2π

ϕ=0

∫ π

ϑ=0
P(ϑ) sin ϑdϑdϕ

=
∫ 2π

ϕ=0

∫ π

ϑ=0

r2|E|2
2Z0

sin ϑdϑdϕ

= π (k0aI0)
2 Z0

4

∫ π

0
J 2

1 (k0a sin ϑ) dϑ

= 30π2 (k0aI0)
2
∫ π

0
J 2

1 (k0a sin ϑ) dϑ. (6.20)

The integral over the square of the Bessel function of order 1 may be transformed into
an integral over a Bessel function of order 2. We then find [5, 6]

Pt = 30π2k0aI 2
0

∫ 2k0a

0
J2(y)dy. (6.21)

Note that the upper integration boundary in equation (6.21) is twice the circumference
of the loop expressed in free-space wavelengths.

For k0a ≥ 5 the integral may be approximated as [5]
∫ 2k0a

0 J2(y)dy ≈ 1. The total
radiated power for large loops may thus be approximated as

Pt = 30π2k0aI 2
0 = 1

2
I 2

0 RA, (6.22)

where RA is the radiation resistance.
For large loops, supporting a uniform, in-phase current density, the radiation resistance

is thus found as

RA = 60π2k0a. (6.23)

So, for a loop with a circumference of five wavelengths (2πa = 5λ0), the radiation
resistance is thus RA = 60π2 · 5 = 2961 	.
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The loop antenna may be envisaged as a series circuit consisting of a resistor (RA) and
an inductor. The inductor value is given by [7]

L = μ0a

[
ln

(
8a

b

)
− 2

]
, (6.24)

where a is the radius of the loop and b is the radius of the wire.

6.1.3 Small Loop Antenna

The far magnetic and electric fields for a small loop antenna (2πa ≤ λ0/10) are obtained
from equations (6.17) and (6.18), respectively, by using a small-argument approximation
for the Bessel function: J1(z) ≈ z

2 for small z.
Thus, we obtain for a small loop antenna:

H = −k2
0

(
πa2I0

)
e−jk0r

4πr
sin ϑ ûϑ , (6.25)

E = k2
0Z0

(
πa2I0

)
e−jk0r

4πr
sin ϑ ûϕ. (6.26)

For calculating the normalized (power) radiation pattern we need to calculate the radi-
ated power per unit of solid angle. By using equation (2.26) we find

P(ϑ) = r2

2Z0
|E|2 = k4

0Z0a
4I 2

0

32
sin2 ϑ, (6.27)

and for the normalized radiation pattern

F(ϑ) = sin2 ϑ. (6.28)

Based on the radiation pattern of a loop having radius a = λ0/20, shown in Figure 6.3,
we have already concluded that the radiation pattern of a small loop antenna is very similar
to that of a small dipole antenna. Now, based on equation (6.28), we may conclude that
the radiation pattern of a horizontal, small loop antenna is identical to that of a small,
vertical dipole antenna.

For calculating the radiation resistance, we first have to calculate the total radiated power

Pt =
∫ 2π

ϕ=0

∫ π

ϑ=0

k4
0Z0a

4I 2
0

32
sin3 ϑϕ

= πk4
0Z0a

4I 2
0

16

∫ π

0
sin3 ϑdϑ

= πk4
0Z0a

4I 2
0

12
, (6.29)

where use has been made of
∫ π

0 sin3 ϑdϑ = 4
3 .
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The radiation resistance RA is then found as

RA = Pt

1
2I 2

0

= πk4
0Z0a

4

6
= 320π4

[
π

(
a

λ0

)2
]2

. (6.30)

For a loop having radius a = λ0/20, the radiation resistance is found to be RA = 1.92 	.
The reactance is found with equation (6.24).

The calculation of the directivity is now straight forward and left as an exercise to the
reader.

6.1.4 Comparison of Short Dipole and Small Loop Antenna

We will now compare a small z-directed dipole antenna with a small loop antenna in the
xy-plane, see Figure 6.4.

The far-field components of the elementary dipole are given by

Hϕd
= jk0pe−jk0r

4πr
sin ϑ, (6.31)

Eϑd
= jk0Z0pe−jk0r

4πr
sin ϑ, (6.32)

where p = I0l is known as the transmitter moment of the dipole antenna.
The far-field components of the elementary loop antenna are given by

Hϑl
= −k2

0me−jk0r

4πr
sin ϑ, (6.33)

Eϕl
= k2

0Z0me−jk0r

4πr
sin ϑ, (6.34)

where m = I0πa2 is the transmitter moment of the loop antenna.
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Figure 6.4 Elementary antennas. (a) Elementary, vertical dipole antenna. (b) Elementary, hori-
zontal loop antenna.
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From equations (6.31)–(6.34) we find that if p = −mk0:

Hϕd
= jHϑl

, (6.35)

Eϑd
= −jEϕl

. (6.36)

The elementary loop antenna is thus the dual of the elementary dipole antenna.

6.2 Printed Loop Antenna

In this section we will design a rectangular strip loop antenna on a PCB for a remote
keyless system. The operational frequency will be 433.92 MHz, a frequency dedicated
in Europe for these systems. We will start with what we have learnt in this chapter to
come up with an initial design that we will fine-tune, using the CST-MWS full wave
analysis software.

6.2.1 Application of Theory

For a remote keyless system, the transmitter must be very small and fit in a user’s hand.
The wavelength to be used is 69.14 cm, so we need to employ an antenna that is much
smaller than the wavelength. The small loop antenna (circumference smaller than a tenth
of a wavelength) is providing a solution to this design problem.

The radiation resistance of a small loop antenna will be very low as we have seen
in section 6.1.3. The value may in fact be lower than the loss resistance of the metal
conductor, thus leading to a low radiation efficiency. Nevertheless, we will use a small
loop antenna due to the size benefit and the closest to omnidirectional radiation pattern it
provides. As we will see, we will be able to impedance match the antenna to 50 	, using
only two lumped element capacitors.

Since for a small loop antenna we may consider the current flowing through it to be
constant, and since the dimensions are much smaller than a wavelength, the actual shape
of the loop is of little importance. For analysis and manufacturing ease we therefore
choose the loop to be square, see Figure 6.5.

The radiation resistance RA of this loop antenna follows from equation (6.30) upon
substituting

(
P
4

)2
for πa2 (the physical area occupied by the loop antenna).

RA = 5

4

(
πP

λ

)4

, (6.37)

provided that the perimeter is less than a tenth of a wavelength, P < λ
10 .

The loss resistance Rl of the metal strip having width W and a conductivity σ at a
frequency f is given by [8]

Rl = P

2W

√
πf μ0

σ
= Pπ

2W

√
120

λσ
. (6.38)

An improved loss resistance equation, accounting for the edge effect of the strip [9], is
given by R′

l = κRl , where 1 < κ < 2.



140 Antenna Theory and Applications
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Figure 6.5 Square strip loop antenna having side P
4 , strip width W and excitation gap width g.

The square loop inductance L is given by [10]

L = μ0P

2π
ln

(
8

(
P
4

)2

PW

)
= μ0P

2π
ln

(
P

2W

)
. (6.39)

We now have the material necessary to calculate the capacitor values in a two-capacitor
impedance matching network.

6.2.1.1 Loop Antenna Matching

The loop antenna may be seen as a series electrical circuit consisting of an inductance L

and a resistor R, see Figure 6.6a. The resistor R comprises the radiation loss RA and the
conductor loss Rl .

With the aid of two capacitors we may impedance match this antenna to a desired
impedance value, in the process boosting the resistance value [11]. Before we describe
this matching process we need to be able to transform a series impedance into a parallel
impedance.

L LC1

C2

Zloop ZloopZin
R

(a) (b)

R

Figure 6.6 Equivalent electric circuit of a small loop antenna (a) and the impedance matching of
this antenna (b).



Loop Antennas 141
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+

Figure 6.7 Series impedance and equivalent parallel impedance.

Figure 6.7 shows a general series impedance and the equivalent parallel impedance.
Rp and Xp can be expressed in terms of Rs and Xs by calculating the admittances of

both circuits:

Ys = 1

Rs + jXs

= Yp = 1

Rp

+ 1

jXp

. (6.40)

Multiplying the nominator and denominator of Ys by (Rs − jXs) results in

Rs − jXs

R2
s + X2

s

= 1

Rp

− j
1

Xp

, (6.41)

so that

Rp = R2
s + X2

s

Rs

, (6.42)

Xp = R2
s + X2

s

Xs

. (6.43)

By introducing the series circuit quality factor

Qs = Xs

Rs

, (6.44)

we obtain

Rp = Rs

(
1 + Q2

s

)
, (6.45)

Xp = Xs

(
1 + Q2

s

Q2
s

)
. (6.46)

We will now perform the impedance matching in two steps. First, we will introduce the
series capacitor C1 only, see Figure 6.6, and find the value for C1 that boosts the real
part of the loop impedance to the desired value. Then we will add the second, parallel
capacitor C2 to tune out the remaining imaginary part of the circuit formed by the small
loop antenna and the series capacitor C1.

We add series capacitor C1 to the loop antenna, getting the equivalent series cir-
cuit shown in Figure 6.8(a) and then transform this circuit into an equivalent parallel
circuit as shown in Figure 6.8(b).
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Figure 6.8 Series circuit representation of a small loop antenna with series capacitor C1 (a) and
the equivalent parallel circuit (b).

The input impedance of the circuit is

Zin = Rin + jXin, (6.47)

where, with the aid of equation (6.45),

Rin = R
(
1 + Q2

s

)
. (6.48)

Since Rin and R are known (Rin is the desired real part of the input impedance), we find
for Qs

Qs =
√

Rin

R
− 1. (6.49)

The series quality factor was defined as the ratio of the imaginary and the real part of the
series impedance, see equation (6.44), so

Qs = Xs

Rs

=
ωL − 1

ωC1

R
. (6.50)

From equations (6.49) and (6.50) we find the value for C1 that will boost the real part of
the loop impedance to the desired value

C1 = 1

ω

(
ωL − R

√
Rin

R
− 1

) . (6.51)

With C1 added in series with the small loop antenna, the parallel reactance X′
p (see

Figure 6.8) is found with the aid of equations (6.44), (6.46) and (6.50) as

X′
p = QsRs

1 + Q2
s

Q2
s

= R
1 + Q2

s

Qs

= R
1 + Rin

R
− 1√

Rin

R
− 1

= Rin√
Rin

R
− 1

. (6.52)
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Since Rin > R, then X′
p > 0 and it can indeed be tuned out with a parallel capacitor C2.

The value of C2, see Figure 6.6, follows from

1 − ωC2X
′
p = 0, (6.53)

so that

C2 = 1

ωX′
p

=
√

Rin

R
− 1

ωRin

. (6.54)

6.2.2 Design of a Printed Loop Antenna

With the analytical equations for the small, square, strip loop antenna and the two-capacitor
matching network we can design the antenna for 433.92 MHz, impedance matched for a
balanced 50 	 front-end.

We start with a square loop antenna having P
4 = 17 mm, see Figure 6.5, so that the

perimeter of the loop is smaller than a tenth of a wavelength at the operational frequency.
We choose the strip width to be W = 1.5 mm, see Figure 6.5, and made of copper (σ =
5.8 · 107 Sm−1) of 70 μm thickness. For W = 1.5 mm, κ equals 1.75.2

With the aid of equations (6.37), (6.38) and R′
l = κRl , we find that

RA = 0.011 	, (6.55)

R′
l = 0.21 	, (6.56)

and for the radiation efficiency

η = RA

RA + R′
l

= 0.050. (6.57)

So, the real part of the input impedance of the loop equals

Rloop = RA + R′
l = 0.22 	, (6.58)

and the imaginary part is calculated with equation (6.39) as

Xloop = ωL = 115.72, (6.59)

at 433.92 MHz.
Next, we will analyze this loop antenna in CST-MWS for verification of the analytical

equations. The loop is drawn as shown in Figure 6.9. The loop is excited with a discrete
port over the (1 mm wide) gap.

The loop is analyzed in the frequency domain, and in the menu results (top bar) the
option S Parameter Calculations is chosen to calculate the Z-matrix. After finishing these
calculations, from the menu on the left we then choose 1D Results , Z Matrix , Real Part
and Imaginary Part . Using the Plot Properties – through a right mouse click on the

2 This value is obtained through an intensive comparison of loops of different perimeter lengths, calculated ana-
lytically and analyzed full-wave employing CST-MWS.
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Figure 6.9 Layout of a square strip loop antenna, excited with a discrete port over a gap.

plot – to zoom in on the results and the Show Measure Lines (right mouse click again) to
show specific values, we get the results shown in Figures 6.10 and 6.11 for the real and
imaginary parts of the loop input impedance as a function of frequency, respectively.

From the figures we see that, at the operational frequency, the real part of the total
loop impedance equals 0.23 	 and the imaginary part equals 112.5 	. Taking these values
as reference, the analytical calculation of the real part of the input impedance (0.22 	)
has a relative error of 4.3%. The analytical calculation of the imaginary part (115.7 	)
results in a relative error of 2.8%. Both errors are considered to be small enough for
initial design purposes.

Finally, in Figure 6.12 we show the calculated far-field radiation (selected by adding a
field monitor in the menu on the left before analysis).

The figure shows a directivity of 2.09 dBi (= 102.09/10 = 1.6), which is slightly larger
than the expected value (1.5 = 10 log(1.5) dBi = 1.8 dBi) and must be attributed to the
fact that we are at the perimeter boundary of what may be considered a small loop
antenna. The radiation efficiency is −13.05 dB (= 10−13.05/10 = 0.050) and agrees very
well with the analytical calculation result, equation (6.57).

With the analytical equations thus being verified, we may now proceed by impedance
matching this antenna to Rin = 50 	.

Using equations (6.51) and (6.54), for C1 and C2, respectively leads to

C1 = 3.36 · 10−12 F = 3.36 pF, (6.60)

C2 = 1.0791 · 10−10 F = 107.91 pF. (6.61)



Loop Antennas 145

Figure 6.10 Real part of the input impedance as a function of frequency of the square strip loop
antenna shown in Figure 6.9.

Figure 6.11 Imaginary part of the input impedance as a function of frequency of the square strip
loop antenna shown in Figure 6.9.
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Figure 6.12 Radiation pattern of the square strip loop antenna shown in Figure 6.9.

These capacitor values are not standard values. Therefore, we will change these values
into the nearest standard values and then, using these new capacitor values, we will calcu-
late the required loop impedance. From this required loop impedance we will determine
the side, P

4 , and the width, W , of the loop. In this determination we will introduce an
approximation. To check the influence of this approximation, we will afterwards calculate
the input impedance of the matched loop.

The nearest standard capacitor values for C1 and C2 are 3.3 pF and 110 pF, respectively.
Then, from Figure 6.6(b), with Zin = Rin, we calculate R and L as

R =
Rin

(
1 + C2

C1

)
1 + ω2C2

2R
2
in

− ω2C1C2Rin

ω4C2
1C

2
2R

2
in + ω2C2

1

, (6.62)

and

L =
C2R

2
in

(
1 + C2

C1

)
1 + ω2C2

2R
2
in

+ C1

ω4C2
1C

2
2R

2
in + ω2C2

1

. (6.63)

Substituting the values for C1, C2 and Rin: 3.3 pF, 110 pF and 50 	, respectively,
leads to

R = 0.22 	, (6.64)

L = 41.98 nH ;ωL = 114.45 	. (6.65)
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Now, we approximate the loop resistance as consisting solely of the loss contribution.
Then, from equation (6.38) we find

P

2W
= α = R

π

√
λσ

120
, (6.66)

and from equation (6.39) we find

P = 2πL

μ0 ln(α)
, (6.67)

so that from α and P we obtain

W = P

2α
. (6.68)

Substituting the values for R, L, λ and σ (σ = 5.8 · 107 Sm−1) in the above
equations gives

P

4
= 14.16 mm, (6.69)

W = 0.70 mm. (6.70)

To check the validity of our approximation for the loop resistance we will now calculate
both the radiation resistance and the loss resistance using the found values for P and W ,
using equations (6.37) and (6.38). The input impedance of the capacitor-matched circuit
is then calculated as

Zin =
1

jωC2

(
1

jωC1
+ jωL + RA + Rl

)
1

jωC2
+ 1

jωC1
+ jωL + RA + Rl

. (6.71)

Substituting all the found values results in Zin = (48.24 − j1.01) 	, a value considered
close enough to the desired 50 	 input impedance.

Next, the square loop with P
4 = 14.16 mm and W = 0.70 mm is analyzed in CST

Microwave Studio®. The real part of the input impedance as a function of frequency
is shown in Figure 6.13 and the imaginary part of the input impedance as a function of
frequency is shown in Figure 6.14.

The figures reveal a discrepancy between the approximate model and the full-wave
model. The full wave analysis results are R = 0.36 	 and that ωL = 116 	.

We will use the full wave analysis software to tune the loop for getting the desired R

and ωL values. To increase the ωL value, we need to enlarge P
4 . To compensate for the

fact that this will also increase the R value and for obtaining a lower R value, we will
also widen the strip width W .

After a few iterations, we find for P
4 = 15.5 mm and W = 1.5 mm that R = 0.23 	 and

ωL = 114 	, which we consider as acceptable results.
However, this cannot be the final design. In a practical application, the loop needs to

be attached to some form of carrier. In this example we choose to use a low-loss (PCB)
substrate having εr = 3.55 and tan δ = 0.0021 with a thickness of 1.524 mm. We take
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Figure 6.13 Real part of the input impedance as a function of frequency for a square strip loop
antenna with P

4 = 14.16 mm and W = 0.70 mm.

Figure 6.14 Imaginary part of the input impedance as a function of frequency for a square strip
loop antenna with P

4 = 14.16 mm and W = 0.70 mm.
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Figure 6.15 Square loop printed strip antenna on a low-loss substrate.

the P
4 and W values just found for a free-standing square strip loop as initial values and

tune these values to realize the desired input impedance. The final structure is shown in
Figure 6.15. The dimensions of the square strip (of thickness 70 μm) are: P

4 = 16.75 mm
and W = 2.25 mm. The rim of the substrate is 9 mm wide. The real and imaginary part
of the input impedance as a function of frequency are shown in Figures 6.16 and 6.17,
respectively.

As the last two figures show, at 433.92 MHz we obtain: R = 0.235 	 and ωL =
114.58 	. Upon substituting these values in equation (6.71), together with C1 = 3.3 pF and
C2 = 110 pF, we get for the matched loop input impedance Zin = (40.20 − j20.25) 	.
This impedance gives rise to a reflection coefficient amplitude, when connected to a
50 	 system, upon substitution in equation (2.22) of |�| = 0.24 = −12.4 dB, which we
consider as acceptable.

6.3 Problems

6.1 What current is needed to radiate 1 kW in total using a large, uniform current, loop
antenna, having a circumference 2πa = 5λ0?

6.2 What current is needed to radiate 1 kW in total using a small loop antenna, having a
circumference 2πa = λ0

20 ?

6.3 Calculate the directivity of a small loop antenna.
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Figure 6.16 Real part of the input impedance as a function of frequency for the antenna shown
in Figure 6.15.

Figure 6.17 Imaginary part of the input impedance as a function of frequency for the antenna
shown in Figure 6.15.
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Figure 6.18 Small loop antenna.

6.4 A small wire loop antenna having radius a (where 2πa <
λ0
10 ) has a far electric field

given by

E = k2
0Z0

(
πa2I0

)
e−jk0r

4πr
sin ϑ ûϕ, (6.72)

where k0 = ω
√

ε0μ0 is the free space wave number, Z0 =
√

μ0
ε0

is the free space

characteristic impedance, ûϕ is the unit vector in the ϕ direction and I0 is the amplitude
of the current that is assumed to be constant over the small loop. ϑ is the angle with
respect to the loop normal, see Figure 6.18.
(a) Calculate the radiated power per unit of solid angle.
(b) Calculate the normalized radiation pattern.
(c) Calculate the radiation resistance. (Hint: Start by calculating the total radiated

power).
(d) If the loss resistance is given by

Rloss = a

b

√
πf μ0

σ
, (6.73)

where f is the frequency, a is the loop radius, b is the wire radius and σ is the
conductivity of the wire, calculate the antenna radiation efficiency

η = Rrad

Rrad + Rloss

, (6.74)

if a = λ0
20 , b = λ0

2000 , σ = 5.8 · 107 Sm-1 and f = 1 GHz.



152 Antenna Theory and Applications

References

1. J.E. Lindsay, Jr., ‘A Circular Loop Antenna with Nonuniform Current Distribution’, IRE Transactions on
Antennas and Propagation , pp. 439–441, July 1960.

2. Donald Foster, ‘Loop Antennas with Uniform Current’, Proceedings of the IRE , pp. 603–607, October
1944.

3. David M. Pozar, Microwave Engineering, second edition , John Wiley & Sons, New York, 1998.
4. Constantine A. Balanis, Antenna Theory, Analysis and Design, second edition, John Wiley & Sons, New

York, 1997.
5. John D. Kraus, Antennas , McGraw-Hill, New York, 1950.
6. G.N. Watson, A Treatise on the Theory of Bessel Functions, second edition, Cambridge at the University

Press, Cambridge, UK, 1966.
7. Richard C. Johnson, Antenna Engineering Handbook, third edition , McGraw-Hill, New York, 1993.
8. K. Fujimote, A. Henderson, K. Hirasawa and J.R. James, Small Antennas , John Wiley & Sons, New York,

1987.
9. R. Faraji-Dana and Y. Chow, ‘Edge Condition of the Field and AC Resistance of a Rectangular Strip

Conductor’, IEE Proceedings , Vol. 137, Pt.H., No.2, pp. 133–140, April 1990.
10. Frederick Grover, Inductance Calculations Working Formulas and Tables , Dover Publications, 1946.
11. Larry Burgess, ‘Matching RFIC Wireless Transmitters to Small Loop Antennas’, High Frequency Elec-

tronics , pp. 20–28, March 2005.



7
Aperture Antennas

We have seen how radiated far magnetic and electric fields can be calculated if the current den-
sity on the antenna is known or can be fairly assessed. For small dipole and loop antennas we
can assume the current density to be constant. For thin dipole antennas we can – in a first order
approximation – assume the current to be sinusoidal. For an increased accuracy, more terms must
be added, complicating the analysis. For large loop antennas (circumference larger than a tenth of
the free-space wavelength) we can only find a solution easily if we take measures to keep the current
density uniform and in-phase. For aperture antennas, like a horn or parabolic reflector antenna, an
assessment of the current density over the conducting, three-dimensional structure in general is a far
from easy task. Often, however, it is possible to make a fair assessment of the fields in the opening
or aperture. In this chapter, we will use these fields to form equivalent sources and calculate the
far magnetic and electric fields from these equivalent sources.

When looking at an aperture, like for example the horn antenna shown in Figure 7.1, we
immediately see the difficulty in assessing the current density on the metallic parts of the
antenna.

An assessment of the fields in the opening or aperture of the horn antenna is fairly
easy though. We can imagine a TEM-like pattern in the aperture with straight electric
field lines between top and bottom conductor (eventually corrected for the conducting
sidewalls) and magnetic field lines perpendicular to the electric field lines. From the fields
in the aperture, we will derive equivalent sources. These equivalent sources will consist of
an electrical current density and a (fictitious) magnetic current density. We already know
how to calculate the radiated fields due to an electric current density. Before we can
calculate the fields radiated by an aperture, we need to be able to calculate the radiated
fields due to a magnetic current density. When we have accomplished that, we will be
able – through the uniqueness theorem1 and the equivalence principle.2 – to calculate the
fields radiated by an aperture antenna.

1 The uniqueness theorem, loosely formulated, states that the fields in a volume are determined uniquely by the
tangential electric fields over part of the surface and the tangential magnetic fields over the rest of the surface.
2 The equivalence principle, loosely formulated, relates the fields outside a source volume to equivalent current
densities on the surface where the fields are zero inside the source volume.

Antenna Theory and Applications, First Edition. Hubregt J. Visser.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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Figure 7.1 Electromagnetic horn antenna.

7.1 Magnetic Sources

For calculating the radiated fields due to (fictitious) magnetic sources, we start with
the Maxwell equations (4.11)–(4.14) and remove the electric sources (Je (r0) = 0 and
ρe (r0) = 0). Next we introduce the magnetic sources – that is a magnetic current density
Jm (r0) and a magnetic charge density ρm (r0) – without for the moment bothering about
the physical meaning, according to

∇ × E(r) = −jωμ0H(r) − Jm(r), (7.1)

∇ × H(r) = jωε0E(r), (7.2)

∇ · H(r) = ρm(r)
μ0

, (7.3)

∇ · E(r) = 0. (7.4)

We have to find E and H,3 given the sources Jm and ρm. As in Section 4.2, we will
introduce a vector potential to be able, in the end, to calculate the radiated fields from
the magnetic current density only.

From equation (7.4) it follows that we may introduce an electric vector potential
Am through

E = − 1

ε0
∇ × Am. (7.5)

Substituting equation (7.5) in equation (7.2) gives

∇ × H = −jω∇ × Am. (7.6)

But if equation (7.6) is true, the following equation is also true

∇ × H = −jω∇ × Am − ∇ × ∇φm, (7.7)

since ∇ × ∇φm = 0, where φm is an arbitrary scalar. We have added the term ∇ × ∇φm

to obtain the most general expression for H:

H = −jωAm − ∇φm. (7.8)

3 From now on, we will stop writing the r-dependence explicitly as long as this does not give rise to confusion.
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Substitution of equations (7.5) and (7.8) in equation (7.1) results in

− 1

ε0
∇ × ∇ × Am = −ω2μ0Am + jωμ0∇φm − Jm, (7.9)

which may be written as

∇∇ · Am − ∇2Am = ω2ε0μ0Am − jωε0μ0∇φm + ε0Jm. (7.10)

Applying the Lorentz gauge

φm = − 1

jωε0μ0
∇ · Am (7.11)

to equation (7.10), leads to

∇2Am + k2
0Am = −ε0Jm, (7.12)

a vectorial Helmholtz equation.
Similarly, we find

∇2φm + k2
0φm = −ρm

μ0
, (7.13)

a scalar Helmholtz equation.
Then, in a procedure completely analogous to the one described in Section 4.2, we find

for the vector potential

Am(r) = ε0

4π

∫∫∫
V0

Jm (r0)
e−jk0|r−r0|
|r − r0| dV0. (7.14)

The far electric and magnetic fields are approximated as, following the procedure in
Section 4.2,

E ≈ jk0e
−jk0r

4πr
ûr ×

∫∫∫
V0

Jm (r0) ejk0ûr ·r0dV0, (7.15)

H ≈ − k2
0

jωμ0

e−jk0r

4πr
ûr × ûr ×

∫∫∫
V0

Jm (r0) ejk0ûr ·r0dV0, (7.16)

which satisfy

E = Z0H × ûr , (7.17)

where Z0 = √
μ0/ε0 is the characteristic impedance of free space.

We now know how to calculate the (far) radiated fields due to electric sources and due
to (fictitious) magnetic sources. For mixed sources, we may simply add the contributions
due to the linearity of the Maxwell equations.

Before we can proceed with the discussion of equivalent sources – a discussion in
which we will give a physical meaning to the magnetic sources – we first need to discuss
the so-called uniqueness theorem.



156 Antenna Theory and Applications

7.2 Uniqueness Theorem

A solution to a problem is said to be unique if this solution is the only possible answer out
of a collection of answers. Uniqueness relates fields and the sources that generate these
fields. For discussing this, let’s assume a source volume V0, surrounded by a surface S0,
see Figure 7.2. Within the source volume we allow the existence of both electric and
magnetic current densities.4

Within S0 we assume the presence of sources Je and Jm. The medium within S0 we
assume to be linear, but lossy. This means that

ε = ε′ − jε′′, (7.18)

μ = μ′ − jμ′′ (7.19)

All fields within S0 have to satisfy the Maxwell equations:

∇ × E(r) = −jωμH(r) − Jm(r), (7.20)

∇ × H(r) = jωεE(r) + Je(r), (7.21)

∇ · H(r) = ρm(r)
μ

, (7.22)

∇ · E(r) = ρe(r)
ε

. (7.23)

We now assume two possible solutions within S0, (Ea, Ha) and (Eb, Hb). The difference
fields are defined by

δE = Ea − Eb, (7.24)

δH = Ha − Hb. (7.25)

ûn

Jm

Je

V0

S0

Figure 7.2 Source volume V0, surrounded by surface S0, containing electric and magnetic current
densities Je and Jm. ûn is the outward-directed normal vector.

4 In the figure we have adopted the convention of using single-pointed arrows to indicate electric current densities
and double-pointed arrows to indicate magnetic current densities.
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Substitution of Ea and Ha in equation (7.20), followed by substitution of Eb and Hb

in equation (7.20) and subtracting the newly formed equations from each other leads to

∇ × δE = −jωμδH. (7.26)

Substitution of Ea and Ha in equation (7.21), followed by substitution of Eb and Hb

in equation (7.21) and subtracting the newly formed equations from each other leads to

∇ × δH = jωεδE. (7.27)

The difference fields thus satisfy the source-free Maxwell equations.
We now take the dot product of equation (7.26) with δH∗, where ∗ means complex

conjugate. Then we take the dot product of the complex conjugate of equation (7.27)
with δE and subtract this dot product from the first one. The result is

δE · (∇ × δH∗) − δH∗ · (∇ × δE) = jωεδE · δE∗ + jωμδH · δH∗. (7.28)

This equation can be simplified, using the vector identity ∇ · (A × B) = B · (∇ × A) −
A · (∇ × B) and using A · A∗ = |A|2, into

∇ · (
δE × δH∗) = −jωε |δE|2 − jωμ |δH|2 . (7.29)

Next, we integrate teh left- and right-hand sides of equation (7.29) over the source
volume and apply the divergence (Gauss) theorem to the left-hand side of the resulting
equation to obtain: ∫∫

S0

(
δE × δH∗) · ûndS0

= −
∫∫∫

V0

[
ωε′′|δE|2 + ωμ′′|δH|2] dV0

− j

∫∫∫
V0

[
ωε′|δE|2 + ωμ′|δH|2] dV0. (7.30)

Since in a lossy medium, ε′′ and μ′′ have to be larger than zero and since ε′ and μ′ are
larger than zero, the condition∫∫

S0

(
δE × δH∗) · ûndS0 = 0, (7.31)

can only be satisfied if everywhere inside S0, δE = δH = 0. The same applies for a
loss-free medium.

Using the vector identity A · B × C = B · C × A = C · A × B, we may write∫∫
S0

(
δE × δH∗) · ûndS0 =

∫∫
S0

(
ûn × δE

) · δH∗dS0 =
∫∫

S0

(
δH∗ × ûn

) · δEdS0.

(7.32)

From equation (7.32) we conclude that condition (7.31) is satisfied if

• the tangential component of the electric field is specified on S0, ûn × δE = 0 on S0;
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• the tangential component of the magnetic field is specified on S0, ûn × δH = 0 on S0;
• the tangential component of the electric field is specified on a part of S0 and the

tangential component of the magnetic field is specified on the remaining part of S0.
ûn × δE = 0 on S1, ûn × δH = 0 on S2 and S1 ∪ S2 = S0.

We will apply these results in the discussion of the equivalence principle.

7.3 Equivalence Principle

By using the equivalence principle, the fields outside an (imaginary) closed surface are
obtained by defining appropriate electric and magnetic current densities over this surface
that satisfy the boundary conditions (continuity of E- and H-fields over the surface).

In our situation, the closed surface encloses the antenna, that is the sources. We will
choose surface current densities in such a way that the fields inside the closed volume
become zero and the fields outside the closed surface are identical to the original fields.
This is schematically shown in Figure 7.3. The surface current densities then become the
equivalent sources for calculating the fields outside the closed surface, that is the radiated
fields by the aperture antenna.

For the equivalent problem, shown in Figure 7.3(b) to be valid, the fields inside and
outside the closed surface S0 must satisfy the boundary conditions for the tangential
components of the electric and magnetic field. If we call the electric and magnetic fields
inside S0, E1 and H1, respectively, then

Jes = ûn × (H − H1)
∣∣
H1=0

= ûn × H, (7.33)

Jms = −ûn × (E − E1)
∣∣
E1=0

= −ûn × E, (7.34)

where Jes and Jms are the electric and magnetic surface current density, respectively, on
the closed surface S0.

(a) (b)

ûn

E, H

E, H

V2

S0

Jm

V1

Je

m, e

m, e

ûn

E, H

V2

S0

Jms

no fields

Jes

V1

m, e

m, e

Figure 7.3 Original (a) and equivalent (b) problem.
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This form of the equivalence principle is also known as Love’s equivalence principle.
With the equivalent sources of equations (7.33) and (7.34), the electromagnetic fields

may be determined by using superposition and equations (4.43) for the electric sources and
equations (7.5)–(7.14) for the magnetic sources. The fields outside S0 are then found as

E(r) = 1

jωε0μ0
∇r × ∇r × Ae − 1

ε0
∇r × Am

= 1

jωε0μ0
∇r × ∇r × μ0

4π

∫∫∫
V0

Jes (r0)
e−jk0|r−r0|
|r − r0| dV0

− 1

ε0
∇r × ε0

4π

∫∫∫
V0

Jms (r0)
e−jk0|r−r0|
|r − r0| dV0

= ∇r ×
∫∫

S0

[
ûn × E (r0)

]
ϕdS0 + 1

jωε0
∇r × ∇r ×

∫∫
S0

[
ûn × H (r0)

]
ϕdS0,

(7.35)

H(r) = 1

μ0
∇rAe + 1

jωε0μ0
∇r × ∇r × Am

= 1

μ0
∇r × ∇r × μ0

4π

∫∫∫
V0

Jes (r0)
e−jk0|r−r0|
|r − r0| dV0

+ 1

jωε0μ0
∇r × ε0

4π

∫∫∫
V0

Jms (r0)
e−jk0|r−r0|
|r − r0| dV0

= ∇r ×
∫∫

S0

[
ûn × H (r0)

]
ϕdS0 − 1

jωμ0
∇r × ∇r ×

∫∫
S0

[
ûn × E (r0)

]
ϕdS0,

(7.36)

where

ϕ = 1

4π

e−jk0|r−r0|
|r − r0| . (7.37)

This is known as the Lorentz–Lamor theorem . Let’s recapitulate:

Lorentz–Lamor Theorem
Assume that within a volume V0, surrounded by surface S0 the sources Je and Jm are
present. The electromagnetic fields outside V0 then follow from

E(r) = ∇r ×
∫∫

S0

[
ûn × E (r0)

]
ϕdS0 + 1

jωε0
∇r × ∇r ×

∫∫
S0

[
ûn × H (r0)

]
ϕdS0,

(7.38)

and

H(r) = ∇r ×
∫∫

S0

[
ûn × H (r0)

]
ϕdS0 − 1

jωμ0
∇r × ∇r ×

∫∫
S0

[
ûn × E (r0)

]
ϕdS0,

(7.39)
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where

ϕ = 1

4π

e−jk0|r−r0|
|r − r0| , (7.40)

and where ûn × H = Jes and E × ûn = Jms are the equivalent electric surface current
density and equivalent magnetic surface current density, respectively, on the surface S0.
Within the volume V0, the electric and magnetic fields are zero.

7.4 Radiated Fields

To calculate the far-fields from the equivalent sources, we may apply the same approx-
imations as in Section 4.3 where we approximated the far-fields radiated by an electric
current density.

In the integrals in equations (7.38) and (7.39) we encounter products of vector functions
and scalar functions. The vector functions do not depend on r, while the operator ‘∇r×’
only operates on r. The scalar function is a function of both r0, the source point, and r, the
observation point. We have seen equations with a similar structure in Section 4.3. There
we saw that for observation point r in the far-field, the vector operations transform into

∇r× → −jk0ûr×, (7.41)

∇r × ∇r× → (−jk0)
2 ûr × ûr × . (7.42)

In the far-field we also found that, applying different approximations in the phase and
amplitude for the vector between source point and observation point,

e−jk0|r−r0|
|r − r0| ≈ e−jk0r

r
ejk0ûr ·r0 . (7.43)

Substitution of equations (7.41)–(7.43) in equations (7.35) and (7.36) then leads to the
following results for the far electric and magnetic fields:

E(r) = −jk0e
−jk0r

4πr
ûr ×

∫∫
S0

([
ûn × E (r0)

] − ûr × [
ûn × Z0H (r0)

])
ejk0ûr ·r0dS0,

(7.44)

and

Z0H(r) = −jk0e
−jk0r

4πr
ûr ×

∫∫
S0

([
ûn × Z0H (r0)

] + ûr × [
ûn × E (r0)

])
ejk0ûr ·r0dS0.

(7.45)

Now that we know how to calculate the far electric and magnetic fields from the
tangential fields on a surface, we will apply this first to a rectangular aperture antenna
and second to a circular aperture antenna.
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7.5 Uniform Distribution in a Rectangular Aperture

Let’s assume that we have a horn antenna with a rectangular aperture as shown in
Figure 7.4(a) and that the source generating the electromagnetic waves is contained within
the waveguide-horn structure as shown in Figure 7.4(b).

We have already mentioned that calculating the far electric and magnetic fields based
on an assumed electric current density is very difficult for such an antenna. We have
seen though that we may transform the source volume into a source volume without
internal fields and having equivalent surface current densities. To use this concept we
have to choose the source volume – or more especially the closed surface of the source
volume – wisely.

As a start we may assume that, in a first order approximation, the metal walls of the
waveguide and horn are perfectly electrically conducting. Therefore, on the surface of
the conductors, Sc, see Figure 7.4,

ûn × E (r0) = 0 on Sc, (7.46)

where ûn is the outward-directed normal on the surface Sc.
We may also assume that the currents flowing on the outside of the conductors, that is

on Sc, are negligible and therefore

ûn × H (r0) = 0 on Sc. (7.47)

So, if we choose the closed surface S0 to be flush with the waveguide-horn structure, that
is S0 = Sc ∪ Sa , where Sa is the surface over the horn opening, the aperture, substitution
of equations (7.46) and (7.47) in equations (7.44) and (7.45) shows that for calculating
the far-fields S0 = Sa .

Sc

Sa

(a) (b)

a

H

E b

Sc

Sa

Source

Figure 7.4 Horn antenna and chosen surrounding surface. (a) Three-dimensional view. (b)
Side view.
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So, if we are able to assess the electric and magnetic fields in the horn aperture, we
may use equations (7.46) and (7.47) to calculate the far fields.

A fair assessment of the aperture fields would be to take the electric and magnetic
fields inside an infinitely long rectangular waveguide with cross-sectional dimensions a

and b, see Figure 7.4(a). To keep the calculations simple, however, we choose to use a
uniform distribution as would be a fair assessment for a rectangular aperture in an infinite,
electrically conducting ground plane. The educational benefit of using this wrong field
assessment is considered to outweigh the use of a physically wrong field distribution.5

So, the field distribution will be, see also Figure 7.5.

E0 = E0ûy on Sa, (7.48)

H0 = −E0

Z0
ûx on Sa, (7.49)

where Sa is defined by − a
2 ≤ x ≤ a

2 and − b
2 ≤ y ≤ b

2 . Furthermore, we have assumed that
the characteristic impedance inside the aperture is equal to the characteristic impedance
of free space.

Substitution of equation (7.49) in equation (7.33) gives the equivalent electric surface
current density as

Jes = ûn × H0 = −E0

Z0
ûz × ûx = −E0

Z0
ûy, (7.50)

and substitution of equation (7.48) in equation (7.34) gives the equivalent magnetic surface
current density as

Jms = −ûn × E0 = −E0ûz × ûy = E0ûx. (7.51)

y

E

H

b/2

–b/2 –a/2

a/2

x

z

Figure 7.5 Uniform rectangular aperture field distribution.

5 Once the calculations with the oversimplified assessed aperture field distribution is completed, the reader should
be able to recalculate the fields with a proper assessment of the aperture field distribution.
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Substitution of equations (7.50) and (7.51) in equation (7.44) then gives, for the far
electric field of the horn antenna,

E(r) = −jk0e
−jk0r

4πr
ûr ×

∫ a
2

x0=− a
2

∫ b
2

y0=− b
2

[−Jms − Z0ûr × Jes

]
ejk0ûr ·r0dx0dy0

= jk0e
−jk0r

4πr

∫ a
2

− a
2

∫ b
2

− b
2

[
ûr × Jms (r0)

]
ejk0ûr ·r0dx0dy0

+ jk0e
−jk0r

4πr
Z0

∫ a
2

− a
2

∫ b
2

− b
2

[
ûr × ûr × Jes (r0)

]
ejk0ûr ·r0dx0dy0

= jk0e
−jk0r

4πr
E0

∫ a
2

− a
2

∫ b
2

− b
2

[
ûr × ûx

]
ejk0ûr ·r0dx0dy0

− jk0e
−jk0r

4πr
E0

∫ a
2

− a
2

∫ b
2

− b
2

[
ûr × ûr × ûy

]
ejk0ûr ·r0dx0dy0. (7.52)

With equation (5.8) we find that

ûr × ûx = ûr × [
ûϑ cos ϑ cos ϕ − ûϕ sin ϕ

] = ûϕ cos ϑ cos ϕ + ûϑ sin ϕ. (7.53)

With equation (5.9) we find that

ûr × ûr × ûy = ûr × ûr × [
ûr sin ϑ sin ϕ + ûϑ cos ϑ sin ϕ + ûϕ cos ϕ

]
= ûr × [

ûϕ cos ϑ sin ϕ − ûϑ cos ϕ
] = −ûϑ cos ϑ sin ϕ − ûϕ cos ϕ. (7.54)

To calculate the dot product ûr · r0 we decompose the two vectors in Cartesian coordinates

ûr · r0 = [
ûx sin ϑ cos ϕ + ûy sin ϑ sin ϕ + ûz cos ϑ

] · [
ûxx0 + ûyy0 + ûz.0

]
= x0 sin ϑ cos ϕ + y0 sin ϑ sin ϕ = x0u + y0v, (7.55)

where u = sin ϑ cos ϕ and v = sin ϑ sin ϕ.
Substitution of equations (7.53)–(7.55) in equation (7.52) gives for the far electric field

E(r) = jk0e
−jk0r

4πr
E0

{
ûϑ sin ϕ [cos ϑ + 1] + ûϕ cos ϕ [cos ϑ + 1]

}
.

∫ a
2

− a
2

∫ b
2

− b
2

ejk0(x0u+y0v)dx0dy0. (7.56)

The integral in equation (7.56) is calculated as

∫ a
2

− a
2

∫ b
2

− b
2

ejk0(x0u+y0v)dx0dy0 =
∫ a

2

− a
2

ejk0x0udx0

∫ b
2

− b
2

ejk0y0vdy0

= 1

jk0u
ejk0x0u

∣∣ a
2
− a

2

1

jk0v
ejk0y0v

∣∣ b
2

− b
2
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= a
1

k0
a
2 u

1

2j

{
ejk0

a
2 u − e−jk0

a
2 u

}
b

1

k0
b
2v

1

2j

{
ejk0

b
2 v − e−jk0

b
2 v

}

= a
sin

(
k0au

2

)
(

k0au

2

) b
sin

(
k0bv

2

)
(

k0bv

2

) = absinc

(
k0au

2

)
sinc

(
k0bv

2

)
, (7.57)

where sinc(x) = sin x
x

, so that finally we find for the far electric field of a uniformly
illuminated rectangular aperture of size a × b:

E(r) = Eϑ ûϑ + Eϕûϕ, (7.58)

where

Eϑ = jk0E0abe−jk0r

4πr
sin ϕ [cos ϑ + 1] sinc

(
k0au

2

)
sinc

(
k0bv

2

)
, (7.59)

Eϕ = jk0E0abe−jk0r

4πr
cos ϕ [cos ϑ + 1] sinc

(
k0au

2

)
sinc

(
k0bv

2

)
, (7.60)

and where u = sin ϑ cos ϕ, v = sin ϑ sin ϕ and sinc(x) = sin x
x

.
Before continuing with the radiation patterns, we will take a closer look at the sinc

function. In Figure 7.6 we show sinc(x), sinc(2x) and sinc(3x) as a function of x.
Figure 7.6 shows that the curve concentrates around x = 0 for increasing α. Looking

at the expressions for the electric field components, equations (7.59) and (7.60), we may
thus conclude that if the aperture gets larger, that is when a and b increase, the radiation

1

0.8

0.6

0.4

0.2

–0.2

–0.4
–180 –160 –140 –120 –100 –80 –60 –40 –20 0

x (degrees)

20 40 60 80 100 120 140 160 180

0

sin(x)/(x)
sin(2x)/(2x)
sin(3x)/(3x)

Figure 7.6 sin(αx)

(αx)
as a function of x for α = 1, 2, 3.
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pattern (that is proportional to the square of the electric field) gets narrower. The beam
concentrates in the forward direction, that is in the bore-sight direction.

We may even be more specific. Therefore we will first look at the plane ϕ = 0. This
is the xz-plane or the horizontal plane in Figures 7.4 and 7.5, the plane parallel to the
a-dimension of the aperture.

For ϕ = 0, v = 0 and u = sin ϑ . Substitution of these values in equations (7.58)–(7.60)
results in

E = ûϕ

jk0E0abe−jk0r

4πr
[cos ϑ + 1] sinc

(
k0a sin ϑ

2

)
. (7.61)

We see that if we increase a, the beam will become smaller in the ϕ = 0 plane, that is
the xz-plane.

Next we will look at the plane ϕ = π
2 . This is the yz-plane or the vertical plane in

Figures 7.4 and 7.5, the plane parallel to the b-dimension of the aperture.
For ϕ = π

2 , u = 0 and v = sin ϑ . Substitution of these values in equations (7.58)–(7.60)
results in

E = ûϑ

jk0E0abe−jk0r

4πr
[cos ϑ + 1] sinc

(
k0b sin ϑ

2

)
. (7.62)

We see that if we increase b, the beam will become smaller in the ϕ = π
2 plane, that is

the yz-plane. Note that this is consistent with what we have seen for a thin wire (dipole)
antenna.

To calculate the normalized radiation pattern, F(ϑ, ϕ) = P(ϑ,ϕ)

Pmax
, we use P(ϑ, ϕ) =∣∣r2S(ϑ, ϕ)

∣∣ and S(ϑ, ϕ) = 1
2Z0

|E(ϑ, ϕ)|2 ûr . Since the maximum radiated power is found
for (ϑ, ϕ) = (0, 0), the normalized far-field (power) radiation pattern is found to be

F(ϑ, ϕ) = |Eϑ(ϑ, ϕ)|2 + ∣∣Eϕ(ϑ, ϕ)
∣∣2

|Eϑ(0, 0)|2 + ∣∣Eϕ(0, 0)
∣∣2 . (7.63)

In Figure 7.7 we show radiation pattern cuts in the plane ϕ = 0 for three values of the
horn a-dimension, a = λ, a = 2λ and a = 3λ, where λ is the free space wavelength.

The figure shows that the beam gets smaller for a larger aperture. It also shows that
the level of the first side lobe seems not to be able to increase beyond a certain level.
This is true and the actual level is −13.26 dB. This level is dictated by the sinc function
for large values of k0a/2 dominates the [cos ϑ + 1] term, see equation (7.62).

Example
Show that the side-lobe level (SLL) cannot exceed a value of −13.26 dB.

For large arguments of the sinc function or for small angles ϑ , the sinc function will
dominate in the calculation of the far electric field. The maximum side-lobe level will
then be determined by this sinc function. To find the maximum, we need to calculate the
derivative with respect to the argument to zero:

d

dx

(
sin x

x

)
= cos x.

1

x
+ sin x. − 1

x2
= x cos x − sin x

x2
= 0. (7.64)
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Figure 7.7 Radiation pattern cuts in the plane ϕ = 0 for three values of the horn a-dimension.

The first solution, x = 0, is obvious and represents the main beam. The second solution
may be found by bisectioning. The result is x ≈ 4.5. The value of the sinc function is
found to be | sin(4.5)/4.5| = 0.217 and the corresponding power level is 20 log(0.217) =
−13.26 dB.

For non-uniform aperture illuminations (as we will actually encounter in a horn aper-
ture) all side lobes will be at a lower level. Aperture weighing is a method for controlling
(lowering) the side lobes. The field in the aperture will be distributed in such a way that
the side lobes will be at acceptable levels. Whatever measure is intentionally or unin-
tentionally taken, the sinc-dictated SLL of −13.26 dB is a maximum value that cannot
be exceeded.

7.6 Uniform Distribution in a Circular Aperture

As an example of a uniform field distribution in a circular aperture antenna, we take the
parabolic (‘dish’) reflector antenna shown in Figure 7.8. A horn antenna illuminates the
reflector and the reflected field in the planar, circular aperture Sa will serve as source for
the horn-reflector antenna system. The reflector is positioned in the far-field region of the
horn antenna.

We suppose that the parabolic reflector is perfect electrically conducting. Furthermore,
we assume that the currents on the back of the reflector are negligible. Thus, with reference
to Figure 7.8

ûn × E = 0 on Sc, (7.65)
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(a) (b)

H

E

Sc
Sc

Sa
Sa

Figure 7.8 Parabolic reflector antenna, illuminated by a small horn antenna. (a) Three-dimensional
view. (b) Side view.

and

ûn × H = 0 on Sc. (7.66)

Then, choosing the closed, surrounding surface S0 flush with the parabolic reflector,
S0 = Sc ∪ Sa , see Figure 7.8, substitution of equations (7.65) and (7.66) in equations
(7.44) and (7.45) shows – as in the case with the rectangular aperture antenna – that for
calculating the far-fields, S0 = Sa .

The electric and magnetic fields on Sa are the fields originating from the horn antenna,
after reflection against the parabolic reflector. In a first order approximation, we may
assume these fields to be uniform, see Figure 7.8,

E0 = E0ûx, (7.67)

H0 = E0

Z0
ûy. (7.68)

In Figure 7.8, the x-axis is in the vertical direction, the y-axis is in the horizontal
direction and the z-axis is in the forward direction. Substitution of equations (7.67) and
(7.68) in equation (7.44) gives

E(r) = −jk0e
−jk0r

4πr
ûr ×

∫∫
S0

([
ûn × E0 (r0)

] − ûr × [
ûn × Z0H (r0)

])
ejk0ûr ·r0dS0.

(7.69)

With ûn = ûz and the aid of equations (7.67) and (5.9), we find that

ûr × ûn × Ea = E0ûr × ûz × ûx = E0ûr × ûy

= E0ûr × [
sin ϑ sin ϕûr + cos ϑ sin ϕûϑ + cos ϕûϕ

]
= E0 cos ϑ sin ϕûϕ − E0 cos ϕûϑ . (7.70)
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With the aid of equations (7.68) and (5.8) we find that

ûr × ûn × Z0Ha = E0ûr × ûz × ûy = −E0ûr × ûx

= E0ûr × [
sin ϑ cos ϕûr + cos ϑ cos ϕûϑ − sin ϕûϕ

]
= −E0 cos ϑ cos ϕûϕ − E0 sin ϕûϑ , (7.71)

so that

ûr × ûr × ûn × Z0H0 = E0 cos ϑ cos ϕûϑ − E0 sin ϕûϕ, (7.72)

and

E0(r) = −jk0e
−jk0r

4πr
E0(1 + cos ϑ)

[
sin ϕûϕ − cos ϕûϑ

] ∫∫
S0

ejk0ûr ·r0dS0. (7.73)

The exponent in equation (7.73) may be written as, using equations (5.8) and (5.9),

ûr · r0 = ûr · [
r0 cos ϕ0ûx + r0 sin ϕ0ûy

]
= r0ûr · [

sin ϑ cos ϕ cos ϕ0ûr + cos ϑ cos ϕ cos ϕ0ûϑ − sin ϕ cos ϕ0ûϕ

+ sin ϑ sin ϕ sin ϕ0ûr + cos ϑ sin ϕ sin ϕ0ûϑ + cos ϕ sin ϕ0ûϕ

]
= r0 sin ϑ cos (ϕ − ϕ0) . (7.74)

The surface element dS0 of the circular aperture may be written as, see also Figure 7.9,

dS0 = rdrdϕ0. (7.75)

Substitution of equations (7.74) and (7.75) in equation (7.73) gives

E(r) = −jk0e
−jk0r

4πr
E0(1 + cos ϑ)

[
sin ϑ ûϕ − cos ϕûϑ

]
.

∫ a

r0=0

∫ 2π

ϕ0=0
ejk0 sin ϑ cos(ϕ−ϕ0)r0dr0dϕ0. (7.76)

dr

dS0

dj0

rdj0
r

Figure 7.9 The surface element dS0 of a circular surface is equal to rdrdϕ0. Not drawn to scale.
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By recognizing that [1]
∫ 2π

0
ejk0r0 sin ϑ cos(ϕ−ϕ0)dϕ0 = 2πJ0 (k0r0 sin ϑ) , (7.77)

where J0(x) is a Bessel function of the first kind, order zero and argument x, and – after
substituting r0 = aρ – using [1], we find that

∫ a

r0=0

∫ 2π

ϕ0=0
ejk0 sin ϑ cos(ϕ−ϕ0)r0dr0dϕ0 = 2π

∫ a

r0=0
J0 (k0r0 sin ϑ) r0dr0

= 2πa2
∫ 1

ρ=0
J0 (k0aρ sin ϑ) ρdρ = 2πa2 J1 (k0a sin ϑ)

(k0a sin ϑ)
, (7.78)

where J1(x) is a Bessel function of the first kind, order one and argument x.
So, finally, we find for the far electric field

E(r) = Eϑ ûϑ + Eϕûϕ, (7.79)

where

Eϑ = ja2k0E0e
−jk0r

2r
(1 + cos ϑ) cos ϕ

J1 (k0a sin ϑ)

(k0a sin ϑ)
, (7.80)

Eϕ = −ja2k0E0e
−jk0r

2r
(1 + cos ϑ) sin ϕ

J1 (k0a sin ϑ)

(k0a sin ϑ)
. (7.81)

The normalized power radiation pattern is given by

F(ϑ, ϕ) = |Eϑ(ϑ, ϕ)|2 + |(ϑ, ϕ)|2
|Eϑ(0, 0)|2 + ∣∣Eϕ(0, 0)

∣∣2 . (7.82)

The numerator of equation (7.82) is found with equations (7.80) and (7.81)

|Eϑ(ϑ, ϕ)|2 + |(ϑ, ϕ)|2 =
[
a2k0E0

2r

]2

(1 + cos ϑ)2 J 2
1 (k0a sin ϑ)

(k0a sin ϑ)2 . (7.83)

For calculating the denominator of equation (7.82) we make use of [1]

lim
x→0

J1(x)

x
= 1

2
, (7.84)

and find

|Eϑ(0, 0)|2 + ∣∣Eϕ(0, 0)
∣∣2 =

[
a2k0E0

2r

]2

. (7.85)

The normalized radiation pattern is thus found, upon substitution of equations (7.83)
and (7.85) in equation (7.82), to be

F(ϑ, ϕ) = F(ϑ) = (1 + cos ϑ)2

[
J1 (k0a sin ϑ)

(k0a sin ϑ)

]2

. (7.86)
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Figure 7.10 Radiation pattern cuts in the plane ϕ = constant for three values of the radius a of
a uniformly illuminated circular aperture antenna.

The radiation pattern has become independent of ϕ. The radiation patterns is rotationally
symmetric around the normal on Sa . In Figure 7.10 we show radiation pattern cuts in
a plane ϕ =constant for three values of the a-dimension, a = 2λ, a = 4λ and a = 6λ,
where λ is the free space wavelength.

As in the case with the uniformly illuminated rectangular aperture antenna, we observe
that the main beam gets smaller if the aperture gets larger. Furthermore, we see that – for
not too broad main beams – the side-lobe level (SLL) remains constant at approximately
−17.6 dB. This is due to the dominant behavior of the J1(x)/x term in equation (7.86).

So, if we want to create a very small antenna beam, we need to apply a very large
aperture antenna. For the two antenna types shown, that is the horn antenna and the
parabolic reflector antenna, this implies also that the volume of the antenna becomes
very large, which is especially impractical if we want to direct the narrow beam in
different directions. By ‘sampling’ the aperture or using an array of small-volume antennas
occupying the same physical aperture, we may overcome this impracticality and at the
same time provide a means for electronically steering the beam, that is steering the beam
without mechanically moving the antenna aperture. This is the subject of the next chapter.

7.7 Microstrip Antennas

An example of a popular aperture antenna is the microstrip patch antenna, although it is not
immediately obvious that this type of antenna is indeed an aperture antenna. Figure 7.11
shows a rectangular microstrip patch antenna, which consists of a rectangular metallic
patch on top of a grounded dielectric slab.



Aperture Antennas 171

W

(a) (b)

L

Figure 7.11 Rectangular microstrip patch antenna of length L and width W . (a) 3D view. (b) Side
view.

The microstrip patch antenna may be thought of as a cavity with electrically conducting
bottom and top and magnetically conducting sidewalls. Since it is a cavity, only standing
electromagnetic waves, or modes, that ‘fit’ into the cavity can exist. The first mode will
occur when the distance between two opposite boundaries equals half a wavelength. So,
while keeping the thickness of the dielectric slab small (in terms of wavelength), making
the L-dimension equal to half a wavelength in the dielectric medium will make the
structure resonate. For the moment we ignore how to excite this standing wave – we will
get to that later. Since the magnetic sidewalls are not perfectly magnetic, the electric field
lines will ‘fringe’ at the patch edges, see Figure 7.12, and this fringing is the origin of
the microstrip patch radiation.

The fringe electric fields have vertical and horizontal components. The horizontal elec-
tric field components are shown in the top view of the microstrip patch antenna, see
Figure 7.12(b). Since the structure is resonant along the L-dimension, we see that the
horizontal electric fields along the width of the patch are in phase, while those along the

W W

L

(a) (b)

L

Figure 7.12 Fringe electric fields at the edges of a rectangular microstrip patch antenna of length
L and width W for the first resonant mode. (a) 3D view. (b) Top view.
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(a) (b)

Figure 7.13 Microstrip patch antenna excitation. (a) Inset microstrip transmission line excitation.
(b) Probe excitation.

length are in anti-phase. We may consider the microstrip patch antenna as consisting of
four small slots [2]. The two slots along the width are, for obvious reasons, called the
radiating slots , while the slots along the length are known as the non-radiating slots . So,
indeed, a microstrip patch antenna is an aperture antenna, or, actually, it consists of two
aperture antennas.

Excitation of the microstrip patch antenna can be accomplished in a number of ways.
Of all the excitation methods available we will only mention the two most used ones. A
microstrip transmission line may be used, see Figure 7.13a, where, for a good impedance
match, the connection to the patch is moved inward. A probe excitation is also possible,
where the outer conductor of a coaxial cable is connected to the ground plane and the inner
conductor is guided through the dielectric and connected to the patch, see Figure 7.13(b).
The probe position is chosen for a good impedance match.

In the remainder of this section we will employ microstrip transmission line feeding.

7.7.1 Application of Theory

With the aid of equations (5.66)–(5.68) we can design a microstrip transmission line of
a desired characteristic impedance.

The relation between the resonance frequency, f0, of the microstrip antenna and the
length, L, is given by:

f0 = 1

2Leff
√

εreff
√

ε0μ0
, (7.87)

where Leff is the effective length of the microstrip patch antenna and εreff is the effective
relative permittivity of the microstrip patch antenna. The effective length of the patch
antenna is given by

Leff = L + 2�L, (7.88)

where �L is a length extension due to the fringing of the field at the edge of the patch
antenna. This extension has to be applied twice. This length extension has been empirically
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determined as [3, 4]

�L = 0.412h

(
εreff + 0.3

) (
W
h

+ 0.264
)

(
εreff − 0.258

) (
W
h

+ 0.8
) , (7.89)

where h is the thickness of the dielectric, and the effective relative permittivity may be
calculated by [5]

εreff = εr + 1

2
+ εr − 1

2

(
1 + 12h

W

) 1
2

. (7.90)

The radiating slot may be modeled, in a first order approximation, as having a uni-
form field distribution. The far-field is then described by equations (7.58)–(7.60) with a

replaced by W and b replaced by h [2].
The antenna now consists of two uniformly excited slots as shown in Figure 7.14
Anticipating the next chapter on array antennas we now have to dwell a bit on the

combined radiation/reception of the two slots.
We start by regarding the two-slot system as a receiving antenna. If a plane wave is

originating from the far field from the direction of P, see Figure 7.14, the signals received
by the two slots will be equal in amplitude but will experience a phase difference. This
phase difference is due to the time lag and the associated difference in path lengths
between the planar phase front ‘hitting’ both slots. This is depicted in Figure 7.15 for a
plane wave incident from the direction ϑ , ϕ = π

2 .
The phase difference for a wave incident from a general direction ϑ , ϕ is then given by

ψ = k0(L + �L) sin ϑ sin ϕ, (7.91)

where k0 = 2π
λ0

is the free space wave number, λ0 being the free space wavelength.

rsinqsinj

rsinq

y

j

q

z

r
P

W

h

x

L + ΔL

Figure 7.14 Equivalent model of a rectangular microstrip patch antenna.
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(L + ΔL)sinq

Figure 7.15 Path length difference for a plane wave from the direction ϑ , ϕ = π
2 incident on a

two slot antenna.

In the transmitting situation, the fields from the two slots in the direction ϑ , ϕ will
experience the same phase difference. The normalized far field power radiation pattern is
now given by equation (7.63)

F(ϑ, ϕ) = |Eϑ(ϑ, ϕ)|2 + ∣∣Eϕ(ϑ, ϕ)
∣∣2

|Eϑ(0, 0)|2 + ∣∣Eϕ(0, 0)
∣∣2 , (7.92)

where

Eϑ(ϑ, ϕ) = Eϑ0(ϑ, ϕ) + Eϑ0(ϑ, ϕ)e−jk0(L+�L) sin ϑ sin ϕ

= 2Eϑ0(ϑ, ϕ)e−jk0
(L+�L)

2 sin ϑ sin ϕ cos

[
k0

(L + �L)

2
sin ϑ sin ϕ

]
, (7.93)

Eϕ(ϑ, ϕ) = Eϕ0(ϑ, ϕ) + Eϕ0(ϑ, ϕ)e−jk0(L+�L) sin ϑ sin ϕ

= 2Eϕ0(ϑ, ϕ)e−jk0
(L+�L)

2 sin ϑ sin ϕ cos

[
k0

(L + �L)

2
sin ϑ sin ϕ

]
, (7.94)

and

Eϑ0 = j
k0E0Wh

4πr
e−jk0r sin ϕ [cos ϑ + 1]

sin
(

k0W sin ϑ cos ϕ

2

)
(

k0W sin ϑ cos ϕ

2

) sin
(

k0h sin ϑ sin ϕ

2

)
(

k0h sin ϑ sin ϕ

2

) , (7.95)

Eϕ0 = j
k0E0Wh

4πr
e−jk0r cos ϕ [cos ϑ + 1]

sin
(

k0W sin ϑ cos ϕ

2

)
(

k0W sin ϑ cos ϕ

2

) sin
(

k0h sin ϑ sin ϕ

2

)
(

k0h sin ϑ sin ϕ

2

) . (7.96)

In the above, E0 is the electric field strength at the rim of the microstrip patch.
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From these equations we may conclude that, provided we design a patch antenna to be
resonant for the fundamental mode (L ≈ λ0

2
√

εr
), the radiation pattern will be cosine like

and the directivity will be at least 4.8 dB.6

7.7.2 Design of a Linearly Polarized Microstrip Antenna

The rectangular microstrip antenna discussed in the previous section is linearly polarized
as can be seen by the direction of the electric field in Figure 7.12. We have seen that the
length of the patch is roughly equal to half the wavelength in the dielectric substrate. An
accurate approximation is obtained by using equations (7.87)–(7.90), but since we will
be optimizing an initial design by iteratively using CST-MWS, half the wavelength in the
dielectric substrate is a good enough starting value for now.

We will be using a microstrip inset feed, the position of which, together with the width
of the microstrip patch antenna, will be used to optimize the impedance matching once
the resonance frequency has been tuned by the length of the patch. A good starting value
for the width of the microstrip patch antenna is given by [6]

W = λ0√
2 (εr + 1)

. (7.97)

We now want to design a rectangular, inset feed, microstrip patch antenna, resonant at
2.45 GHz and impedance matched to 50 �. The substrate will be FR4, having thickness
h = 1.6 mm, relative permittivity εr = 4.28 and loss tangent tan δ = 0.016. The top view
of the antenna is shown in Figure 7.16.

For the initial values we take the length L equal to half the wavelength in the substrate,
leading to L = 29.6 mm. For the width W we employ equation (7.97), resulting in W =
37.7 mm. With the use of equations (5.66)–(5.68), we find for the microstrip transmission
line width Wf = 3.3 mm. We fix the gap g, see Figure 7.16, at g = 1 mm and for the
inset length Lf we choose an arbitrary value that needs to be smaller than L

2 .7 We choose
Lf = L

4 .
In analyzing the microstrip patch antenna in CST-MWS, we apply a rim of 15 mm

around the patch, attach a waveguide port to the microstrip transmission line, see
Figure 7.17, and perform an analysis using the time domain solver.

An adaptive analysis shows a resonance frequency of 2.41 GHz and already a good
impedance match, see Figure 7.18. For the impedance match we do not look at the
absolute level of the reflection at the resonance frequency but at the −10 dB frequency
bandwidth. Any reflection below −10 dB is considered as good, the actual level is of less
importance. The broader the −10 dB frequency range is, the better the design will be in
compensating for manufacturing tolerances.

6 This assessment is based on the assumption that the slot will, in the worst case, be like a small dipole, thus
having a directivity of 1.5, and that decreasing the values of ϑ and ϕ to zero leads to a multiplicative factor of
two, thus yielding a minimum directivity value of 3 or 4.8 dB.
7 At L

2 the electric field underneath the patch equals zero, see Figure 7.12, and the patch thus cannot be excited at
that position.
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Figure 7.16 Top view of a rectangular, microstrip inset feed excited microstrip patch antenna.

Figure 7.17 Rectangular, microstrip inset feed, microstrip patch antenna as analyzed in CST-
MWS.
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Figure 7.18 Reflection as a function of frequency for the microstrip antenna shown in Figure 7.17.

Before tuning for resonance, we first have a look at the port impedance to check if the
characteristic impedance of the microstrip transmission line is 50 �. If the port impedance
deviates strongly from 50 �, the characteristic impedance of the microstrip transmission
line will also deviate strongly from this value and the section of transmission line will
become part of the antenna. If the characteristic impedance is 50 �, the transmission line
will not be part of the antenna and will only carry signals from the port to the antenna
and vice versa. Figure 7.19 shows the port impedance as a function of the number of
analysis passes.

The figure shows that the input impedance is approximately 47.6�. This results in a
voltage reflection coefficient of

� = Z0 − Zin

Z0 + Zin

= 50 − 47.6

50 + 47.6
= 0.025, (7.98)

which is quite acceptable. So we do not need to tune the width of the microstrip trans-
mission line.

Since the resonance frequency is a bit too low, we need to decrease the value of L.
Reducing the value to L = 29.1 mm results in a matched antenna at the right resonance
frequency, see Figure 7.20.

The results are actually so good that we do not see a need to tune the width W or the
feed line inset length Lf .

The port impedance value is now approximately 47.8� and thus has hardly changed.
The radiation is cosine like and shows a directivity of 6.9 dBi, see Figure 7.21.

We may use this linearly polarized microstrip patch antenna as a starting point for
designing a circularly polarized microstrip patch antenna.
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Figure 7.19 Port impedance as a function of the number of analysis passes for the microstrip
antenna shown in Figure 7.17.

Figure 7.20 Reflection as a function of frequency for the reduced length microstrip antenna.
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Figure 7.21 Radiation pattern at 2.45 GHz for the reduced length microstrip antenna.

7.7.3 Design of a Circularly Polarized Microstrip Antenna

Circularly polarized waves are employed in, for example, satellite communications and
radar. At L-band frequencies, the ionosphere will rotate a linearly polarized wave as
it passes through it. By employing circularly polarized waves and antennas, negative
effects on linearly polarized waves, such as co-polarized signal attenuation and cross-
polarized signal amplification, are avoided. In radar, circularly polarized waves may be
employed to ‘see through’ rain. Upon reflection at a raindrop, a circularly polarized wave
will change in direction (right-hand into left-hand and vice versa) and with the correct
circular polarization of the receive antenna this reflected signal will not be detected. A
linearly polarized wave would shift 180 degrees in phase upon reflection and would still
be detected by the linearly polarized receive antenna.

Having thus given a rationale for circularly polarized antennas, we will design a circu-
larly polarized microstrip patch antenna at 2.45 GHz, using the linearly polarized antenna
from the previous section as a starting point.

To create circular polarization, we need to excite two orthogonal modes in the patch
antenna – at the same frequency – and create a 90 degree phase difference between the
two excitations. That means that if we make the width equal to the length of the patch
and introduce a second microstrip inset feed at an orthogonal side and introduce the
required phase difference, we should be able to create circularly polarized radiation. The
required phase difference may be introduced by creating a transmission line path length
difference between the two ports that equals a quarter wavelength in the dielectric. The
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Figure 7.22 Top view of circularly polarized microstrip patch antenna.

phase difference is then given by

ψ = kδl = 2π

λg

λg

4
= π

2
, (7.99)

where δl is the transmission line length difference and λg is the wavelength in the
dielectric.

The top view of the microstrip antenna then looks like shown in Figure 7.22.
In the design, we use a T-splitter to divide the power and introduce a line length

difference between the two ports. The characteristic impedance of the input microstrip
transmission line is 50 �. If we make the characteristic impedances of the microstrip
transmission lines going to the patch equal to 100 � and if we design the antenna ports
for a 100 � input impedance, the load to the 50 � input transmission line will be two
parallel 100 � resistances, which equals 50 �.

Using equations (5.66)–(5.68) we find for the width, W100, of a 100 � microstrip
transmission line W100 = 0.84 mm, using a 1.6 mm thick FR4 substrate having a relative
permittivity εr = 4.28 and a loss tangent tan δ = 0.016. After tuning in CST-MWS we
correct this width to W100 = 0.80 mm. The other dimensions of the microstrip patch
antenna are taken from the linearly polarized design: L =29.1 mm, Lf = 7.4 mm and
g = 1 mm. We first analyze the patch antenna with two separate ports to check on the
resonance frequency, port impedance and matching, see Figure 7.23.

To start with, we check for the port impedance, see Figure 7.24, which turns out to be
approximately 97.5 � for both ports, which is acceptable.

The reflection as a function of frequency at the two ports is shown in Figure 7.25.
In the same Figure also the transmission from port to port is shown as a function of
frequency. Although full convergence is not yet reached in the results shown, the results
are considered good enough for further design.

We do see that the resonance frequency is too low, but that the impedance match (to
100 �) is good. We also see from the S12 and S21 results that the isolation between the
two ports is not that high. This must be due to the fact that the two excitation positions
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Figure 7.23 Dual polarized microstrip patch antenna with 100 � transmission lines.

Figure 7.24 Port impedances as a function of analysis passes for the structure shown in
Figure 7.23.
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Figure 7.25 Reflection and transmission as a function of frequency at and between the ports of
the structure shown in Figure 7.23.

at the patch antenna are positioned very close to each other. For the moment, we do not
take measures to improve the port isolation and continue with tuning the antenna for the
right resonance frequency. For this we need to decrease the value of L.

With a few iterations of CST-MWS, we find that for resonance L = 26.2 mm is a
good value. For a good impedance match, the length of the inset slot, that is the feeding
location, has been decreased to Lf = 6 mm, see Figure 7.26. The scattering parameters
as a function of frequency are shown in Figure 7.27.

With this two-port antenna design as a basis, we can now set up the structure for
circular polarization as shown in Figure 7.22. Whether the shown structure is for left-
hand or right-hand circular polarization is of little importance at the moment. Rotating the
feeding structure over 90 degrees counterclockwise will change the polarization direction,
so the correct polarization direction can be chosen after finishing the initial design.

In the design process we may expect that we have to tune the microstrip patch dimen-
sions again due to coupling effects from the various feeding lines. This tuning could be
avoided by applying a wide separation between microstrip patch antenna and microstrip
transmission lines. But since that would lead to an antenna design too large for practical
use, we accept the expected tuning.

The layout of the final design is shown in Figure 7.28.
The microstrip patch has been slightly altered, the length and width, see Figure 7.22

have changed into L = W = 26.2 mm and the inset feed gap length has become Lf =
6.0 mm. The gap between microstrip line edge and the edge of the feeding gap has been
increased to 2 mm. The length of the 0.8 mm wide 100 � microstrip line from 50 �

line to the edge of the microstrip patch is 6.4 mm, the (horizontal) length of the bottom



Aperture Antennas 183

Figure 7.26 Redesigned dual polarized microstrip patch antenna with 100 � transmission lines.

Figure 7.27 Reflection and transmission as a function of frequency at and between the ports of
the structure shown in Figure 7.26.
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Figure 7.28 Circularly polarized microstrip patch antenna.

Figure 7.29 Port impedance as a function of analysis passes for the structure shown in Figure 7.28
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Figure 7.30 Reflection coefficient as a function of frequency for the antenna shown in Figure 7.28

100 � microstrip line is 19.80 mm. The distance between the edge of this line and the
bottom edge of the microstrip patch antenna is 0.45 mm. The length of the vertical 100 �

microstrip line is 14.65 mm.
In the tuning process, we have also changed the width of the ‘50 �’ microstrip line to

3.1 mm to obtain a closer match to 50 �, see Figure 7.29.
Finally, in the next three figures, we show the results of the design. To start with, in

Figure 7.30 we show the reflection coefficient as a function of frequency.
Although the resonance is not exactly at 2.45 GHz, the −10 dB frequency bandwidth

is wide enough to cover the frequency of interest. In Figure 7.31 the right-hand circu-
larly polarized radiation pattern is shown, demonstrating a 5.68 dBi RHCP directivity at
2.45 GHz.

The cross polarized pattern, that is the orthogonally polarized pattern or LHCP pattern
is shown in Figure 7.32, demonstrating a −0.75 dBi directivity.

7.8 Problems

7.1 The far electric field of a (uniformly illuminated) rectangular aperture antenna, having
dimensions a and b, see Figure 7.33, is given by

E (ϑ, ϕ) = Eϑ ûϑ + Eϕûϕ, (7.100)
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Figure 7.31 RHCP radiation pattern for the antenna shown in Figure 7.28.

Figure 7.32 LHCP radiation pattern for the antenna shown in Figure 7.28.
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Figure 7.33 Rectangular aperture antenna.

where ûϑ and ûϕ are unit vectors in the ϑ- and ϕ-directions, respectively and where

Eϑ = jk0E0abe−jk0r

4πr
sin ϕ [cos ϑ + 1] ·

sin
(

k0a

2 sin ϑ cos ϕ
)

(
k0a

2 sin ϑ cos ϕ
) sin

(
k0b

2 sin ϑ sin ϕ
)

(
k0b

2 sin ϑ sin ϕ
) , (7.101)

Eϕ = jk0E0abe−jk0r

4πr
cos ϕ [cos ϑ + 1] ·

sin
(

k0a

2 sin ϑ cos ϕ
)

(
k0a

2 sin ϑ cos ϕ
) sin

(
k0b

2 sin ϑ sin ϕ
)

(
k0b

2 sin ϑ sin ϕ
) . (7.102)

Here, k0 = 2π
λ0

is the free space wave number.
(a) Derive an expression for the normalized radiation pattern.
(b) For ϕ = π

2 (yz-plane), plot, between ϑ = −π
2 and ϑ = π

2 , the normalized radia-
tion pattern on a logarithmic scale for b = 2λ0.

(c) Quantify from this graph the half power beamwidth.
(d) For ϕ = π

2 (yz-plane), plot, between ϑ = −π
2 and ϑ = π

2 , the normalized radia-
tion pattern on a logarithmic scale for b = λ0

2 .
(e) Quantify from this graph the half power beamwidth.

7.2 Calculate the theoretical maximum value of the second side lobe relative to the main
beam for a uniformly illuminated rectangular aperture antenna.

7.3 For the rectangular microstrip patch antenna shown in Figure 7.21, the dimensions
are W = 37.7 mm, L = 29.1 mm and h = 1.6 mm. Use these dimensions as input for
equations (7.92)–(7.96) to calculate the normalized radiation pattern in
(a) the plane ϕ = 0 (xz-plane).
(b) the plane ϕ = π

2 (yz-plane).
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8
Array Antennas

We have seen in the discussion of the radiated fields of wire and aperture antennas that the radiated
fields consist of contributions from an infinite number of elementary sources. On a macroscopic
level, we may group elementary sources into antenna elements and then use these antenna elements
to create a larger aperture antenna. The benefits of such an operation are twofold. First an aperture
antenna is created occupying a relatively small volume allowing control over the field distribution.
Second, by applying a phase-taper over the elements that make up the aperture, the radiated beam
may be pointed into a desired direction without physically moving the antenna. Although array
antennas come in many forms, including linear, planar, curved and three-dimensional ones, we will
only discuss array antenna basics and therefore will stick to the linear array antenna.1

8.1 A Linear Array of Non-Isotropic Point-Source Radiators

Let’s assume a system of identical radiators, placed at equidistant positions along a straight
line, see Figure 8.1. This system is a so-called linear array antenna . Neither the identi-
calness of the radiators, nor their equidistant positions are prerequisites for a linear array
antenna. They are introduced though to avoid obscuring the explanation of the linear array
antenna basics. Besides, in practical situations, linear array antennas are often realized
with identical radiators that are equidistantly positioned.

Also for clarity reasons, we assume that the individual radiators that make up the array
antenna do not occupy any volume, but we allow them to have a non-isotropic radiation
pattern. In other words, we assume the radiators to be (physically not realizable) non-
isotropic point sources . Thereby we allow the radiators to have directivity, that is have a
non-trivial radiation pattern, but for the moment we do not have to bother with restrictions
in positioning the elements due to their own physical dimensions since we simply assume
these physical dimensions to be non-existent.

Furthermore, for explaining the array antenna basics, we consider the array antenna to
be a receiving antenna. This is not a restriction, since by virtue of the reciprocity theorem ,

1 The material discussed in this chapter is to a large extend taken from [1].

Antenna Theory and Applications, First Edition. Hubregt J. Visser.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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Figure 8.1 A linear array of K radiators, equidistantly positioned along a straight line, where a
plane wave is incident at an angle ϑ with respect to the array normal.

we know that the characteristics of an antenna when used as a transmitting antenna are
identical to those when used as a receiving antenna.

Accepting these restrictions, we assume, see Figure 8.1, that the wavefront of a plane
wave is incident upon the linear array antenna at an angle ϑ to the array aperture. The
wavefront is perpendicular to the direction of the plane wave. This direction is indicated
by rays in the figure.

A wavefront is defined by the characteristic that all points on the wavefront have equal
amplitude and phase values.

Our linear array antenna consists of K radiators or elements. At a given moment, the
planar wavefront has reached element K , see Figure 8.1. To reach element K − 1, the
planar wavefront must travel a distance d sin(ϑ), as may be seen from the same figure.
To reach element K − 2, the wavefront must travel a distance 2d sin(ϑ), and so on. If
we normalize the phases of the received signals such that the phase at element K is
zero, the phase differences with respect to element K of the signals received by the other
elements represent the received phases of these elements. These phases, �i , are obtained
by multiplying the path lengths by the free space wave number, k0.

�i = k0(K − i)d sin(ϑ) for i = 1, 2, . . . , K, (8.1)

where

k0 = 2π

λ0
. (8.2)

Here, λ0 is the wavelength in free space.
By the term received signal , we mean the current flowing through the clamps of the

element or the amplitude of the guided wave traveling through the waveguide connected
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to the element.2 The exact nature of this signal is of no concern for the explanation of
the array antenna basics.

The complex signals received by the elements of the array antenna, Si(ϑ), may be
written as

Si(ϑ) = Se(ϑ)aie
jk0(K−i)d sin(ϑ) for i = 1, 2, . . . , K, (8.3)

where Se(ϑ) represents the complex radiation pattern of one isolated individual radiator
and ai is the amplitude received by the ith element. For the moment we will assume that
all amplitudes received by the elements are equal and normalized to one, that is

ai = 1 for i = 1, 2, . . . , K. (8.4)

We call this a uniform aperture distribution .
If we combine all received signals without introducing additional phase differences

between the elements, we may simply add the received signals described by equation
(8.3) for all elements i. The total received signal, S(ϑ), is then found to be

S(ϑ) =
K∑

i=1

Si(ϑ) = Se(ϑ)

K∑
i=1

ejk0(K−i)d sin(ϑ). (8.5)

Combining the received signal without introducing additional phase differences may
be accomplished by using a feeding or summing network (in the appropriate waveguide
technology) that ensures equal path lengths to all elements of the array. Such a feeding
network is schematically shown in Figure 8.2.3

In writing down equation (8.5), we have implicitly assumed that the radiation pat-
tern of an individual radiator remains the same upon placing this radiator in an array
environment. Apart from the interaction introduced by the inter-element distances and

d

S1 S2 S3

S

SK−1 SK

1 2 3 K−1 K

d d

Figure 8.2 Linear array antenna with equal path length summing network.

2 The waveguide may be a hollow rectangular waveguide, a two-wire or a coaxial transmission line, for example.
3 This type of feeding arrangement is known as a corporate feeding network .
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the phase differences that these distances cause, no further interaction between the radi-
ators is assumed. In other words we neglect mutual coupling between the radiators.
Although situations may arise where this assumption is valid, in general it is not true. How-
ever, for the explanation of array antenna basics we neglect mutual coupling effects for
the moment.

Having accepted this, we return to equation (8.5) and see that the received signal may
be separated in a component due to a single radiator and in a component due to the array
configuration only,

S(ϑ) = Se(ϑ)Sa(ϑ), (8.6)

where Se(ϑ) is known as the element factor and

Sa(ϑ) =
K∑

i=1

ejk0(K−i)d sin(ϑ) (8.7)

is known as the array factor .
The element factor is the radiation pattern of a single radiator, and the array factor is

the radiation pattern of an array of K isotropic radiators. The radiation pattern of the
linear array antenna, S(ϑ), is obtained by multiplying the element factor, Se(ϑ), with the
array factor, Sa(ϑ). This operation is known as pattern multiplication .

Example
Consider a linear array antenna consisting of eight elements. The element voltage radiation
pattern is given by

Se(ϑ) = cos(ϑ). (8.8)

Given this hypothetical voltage radiation pattern,4 calculate and show the element factor
power pattern, the array factor power pattern and the power radiation pattern of the total
array as a function of the angle ϑ relative to the array normal (broadside) for the following
element distances d:

1. d = λ0
4 ;

2. d = λ0
2 ;

3. d = λ0;

4. d = 5λ0
4 .

Using equations (8.6), (8.7) and (8.8) produces the radiation power patterns shown in
Figures 8.3, 8.4, 8.5 and 8.6 for d = λ0

4 , d = λ0
2 , d = λ0 and d = 5λ0

4 , respectively. The
element power pattern is calculated as 20 log (|Se(ϑ)|), the normalized array factor power
pattern is calculated as 20 log (|Sa(ϑ)| /8) and the normalized power pattern of the total
array is calculated as 20 log (|Se(ϑ)| |Sa(ϑ)| /8).

4 Although the element radiation pattern is a hypothetical one, it bears a strong resemblance with the radiation
pattern of a horizontal half-wave dipole antenna as may be seen by comparing the (power) radiation pattern with the
ones shown for a vertical half-wave dipole antenna. The pattern also resembles that of a slot in an infinite ground
plane. Assuming these latter elements, we only need to consider the radiation pattern in the upper hemisphere,
−90◦ ≤ ϑ ≤ 90◦. The power radiation pattern is the square of the voltage radiation pattern.



Array Antennas 193

−90 −80 −70 −60 −50 −40 −30 −20 −10 0
−40

−35

−30

−25

−20

−15

−10

−5

0

10

Theta (degrees)

element
factor

N
or

m
al

iz
ed

 p
ow

er
 (

dB
)

20 30 40 50 60 70 80 90

Figure 8.3 Power radiation patterns of the element factor, the array factor and the total array of
a linear eight-element broadside array with element distance d = λ0
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Figure 8.4 Power radiation patterns of the element factor, the array factor and the total array of
a linear eight-element broadside array with element distance d = λ0
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Figure 8.5 Power radiation patterns of the element factor, the array factor and the total array of
a linear eight-element broadside array with element distance d = λ0.
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Figure 8.6 Power radiation patterns of the element factor, the array factor and the total array of
a linear eight-element broadside array with element distance d = 5λ0
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We clearly see that the main beam of the linear array antenna gets smaller when the
elements occupy a larger area, that is when the element distance increases. Furthermore,
we see that after passing a critical element distance, a further increase of the element
distance leads to the introduction of additional main beams.

We also see that the total linear array antenna behavior is dominated by the array factor.
The directive properties of the elements merely act as an angular filter that lowers the
radiated power of the array antenna for angles getting closer to endfire, that is, directions
parallel to the linear array antenna. Due to the dominant character of the array factor we
will discuss this array factor in more detail.

8.2 Array Factor

The array factor is given by equation (8.7), which can be rewritten, in more compact
form, as

Sa(ϑ) =
K∑

i=1

ejk0(K−i)d sin(ϑ) =
K∑

i=1

ej (K−i)T , (8.9)

where

T = k0d sin(ϑ). (8.10)

In equation (8.9) we may recognize a finite geometric series.
If we multiply both sides of this equation with ejT , we get

Sa(ϑ)ejT = ejKT + ej (K−1)T + · · · + ej2T + ejT . (8.11)

Next, we subtract equation (8.9) from equation (8.11) and thus obtain

Sa(ϑ)
(
ejT − 1

) = (
ejKT − 1

)
, (8.12)

which may be written, after splitting and rearranging the exponential terms, as

Sa(ϑ) =
ej KT

2

(
ej KT

2 − e−j KT
2

)

ej T
2

(
ej T

2 − e−j T
2

) = ej K−1
2 T

sin
(

K
2 T

)
sin

(
1
2T

) , (8.13)

so that, finally, using k0 = 2π/λ0

|Sa(ϑ)| =
∣∣∣∣∣
sin

(
K
2 k0d sin(ϑ)

)
sin

(
1
2k0d sin(ϑ)

)
∣∣∣∣∣ =

∣∣∣∣∣∣
sin

(
π Kd

λ0
sin(ϑ)

)

sin
(
π d

λ0
sin(ϑ)

)
∣∣∣∣∣∣ . (8.14)

8.3 Side Lobes and Grating Lobes

With the newly found expression for the (voltage) radiation pattern of a linear array
antenna consisting of isotropic radiators, we may now analyze some characteristics of
side lobes and grating lobes .
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8.3.1 Side-Lobe Level

Equation (8.14) shows that the maximum of the (voltage) array factor occurs for ϑ = 0
and is equal to K . For angles ϑ close to broadside, that is around the main beam, we
may approximate the array factor of equation (8.14) using an approximation for the sine
function for small arguments, sin(x) ≈ x. This leads to the following expression for the
absolute value of the array factor near broadside

|Sa(ϑ)| ≈ K

∣∣∣∣sin(Kx)

Kx

∣∣∣∣ , (8.15)

where

x = π
d

λ0
sin(ϑ). (8.16)

We have specifically chosen this representation, with a factor K in both the numerator
and denominator.

We have seen, in discussing the rectangular aperture antenna, that the second maximum
of

∣∣ sin(Kx)

Kx

∣∣ appears for the argument being equal to approximately Kx ≈ 4.5 and that the
amplitude of this maximum is equal to 0.21723.

Therefore the level of the radiation power pattern’s first side lobe will be approximately
20 log 0.21723 = −13.26 dB, relative to the pattern maximum.

Comparing this value with the first side-lobe levels of the array factor as shown in
Figures 8.3–8.6 indicates the validity of our approximation for the array factor in the
vicinity of broadside.

8.3.2 Grating Lobes

Equation (8.14) not only shows that the maximum of the (voltage) array factor (K) occurs
for ϑ = 0, but the equation also shows that the array factor is a periodic function of ϑ

and that multiple maxima occur whenever

π
d

λ0
sin(ϑ) = mπ for m = 1, 2, 3, . . . , (8.17)

that is for the argument of the sine function being an integer multiple of π . Note that due
to the absolute value of the sine function appearing in the expression for the radiation
pattern, the periodicity has become π instead of 2π .

From the above equation, a restriction for the element distance follows that ensures
that there is only one maximum (m = 1) within the range −ϑmax ≤ ϑ ≤ ϑmax

d

λ0
≤ 1

|sin (ϑmax)| . (8.18)

If we do not want to have secondary maxima or lobes within the whole angular range,
−π

2 ≤ ϑ ≤ π
2 , the restriction becomes more severe:

d

λ0
≤ 1∣∣sin

(
π
2

)∣∣ = 1. (8.19)
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If this condition is not met, more than one maximum will occur. These extra maxima
are known as grating lobes , a term originating from optics.

In our example, grating lobes are occurring for the situation where d = λ0, see
Figure 8.5, and for the situation where d = 5λ0

4 , see Figure 8.6. Figure 8.5 reveals that
keeping too strictly to the grating lobe condition as stated in equation (8.19) does not
prevent grating lobe effects being present at all in the radiation pattern. Choosing an
inter-element distance too close to one wavelength, still results in unwanted effects in the
radiation pattern due to the slopes of the first grating lobes. Thus, keeping the grating
lobe maximum out of visible space (−π

2 ≤ ϑ ≤ π
2 ) alone is not enough to ensure that

we don’t see any grating lobe effects. Therefore, the inter-element distance should be
chosen with great care and should be smaller than one wavelength.

We need to be aware of the fact that a grating lobe differs from an ordinary side
lobe. Side lobes are the result of constructive and destructive interference from different
radiating parts of the antenna. The level of a side lobe is always below that of the main
beam. A grating lobe is due to the periodicity in the radiation pattern and is formed in
directions where a maximum in-phase addition of radiated fields occur. A grating lobe
should be compared with the main beam instead of to an ordinary side lobe. The level
of a grating lobe is equal to that of the main beam, since a grating lobe is a repeated
main beam. As can be seen from the array factor in Figures 8.5 and 8.6, each grating
lobe is accompanied by its own set of side lobes that are – just like the grating lobe
itself – copies of the radiation pattern around broadside.

Due to the earlier mentioned ‘angular filtering characteristics’ of the element factor,
the grating lobe phenomenon seems to be less severe in Figure 8.5 than in Figure 8.6. In
the first figure, the element factor greatly reduces the amplitude of the grating lobe. As
we can see in both figures, the side-lobe levels are also affected (lowered) by the element
radiation pattern.

By weighing the amplitudes of the array antenna elements we may further control the
side-lobe levels. By introducing additional phase differences between the elements, we
can change the directive properties of the array antenna.

8.4 Linear Phase Taper

As in the previous chapters we start by considering a linear array antenna consisting of
K elements, equally spaced by a distance d. The direction of a wave is described by the
angle ϑ between rays and the array normal. The difference with the previous situation is
that now, in the (corporate) feed network, we add a microwave two-port between every
antenna element and its branch of the feed network, see Figure 8.7.

The transfer function, Hi(ϑ), of the microwave two-port i, i = 1, 2, . . . , K , is
given by

Hi(ϑ) = Si(ϑ)

S ′
i (ϑ)

= aie
jψi . (8.20)

How to realize such a two-port is beyond the scope of this book. Details may be found
in [1]. It suffices to say now that the two-port will allow us to change the amplitude
of every received signal S ′

i (ϑ) and – more important for the moment – it will allow us
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Figure 8.7 A linear phased array of K radiators, equidistantly positioned along a straight line,
where a plane wave is incident at an angle ϑ with respect to the array normal.

to change the phase of the received signal. The two-ports open up the opportunity of
operating a phased array antenna .

Since Si(ϑ) = S ′
i (ϑ)Hi(ϑ) and we already know from the theory of the linear broadside

array antenna that S ′
i (ϑ) = Se(ϑ)ejk0(K−i)d sin(ϑ), where k0 = 2π

λ
is the free space wave

number and Se(ϑ) is the element radiation pattern, we may now write for the array
radiation pattern, see also Figure 8.7,

S(ϑ) =
K∑

i=1

Si(ϑ) = Se(ϑ)

K∑
i=1

aie
j[k0(K−i)d sin(ϑ)+ψi]. (8.21)

In this equation we have implicitly assumed that mutual coupling effects between
the array antenna elements are negligible (or identical for all elements), allowing for a
common element radiation pattern that is taken out of the summation.

All the coefficients ai form an amplitude taper. In order not to obscure the phased array
antenna discussion, we assume a uniform, normalized amplitude distribution:

ai = 1 for i = 1, 2, . . . , K. (8.22)
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Now, we only have to consider the array factor, Sa(ϑ), that is given by

Sa(ϑ) =
K∑

i=1

ej[k0(K−i)d sin(ϑ)+ψi]. (8.23)

If, next, we choose a linear phase taper that is equal to

ψi = −k0(K − i)d sin (ϑ0) for i = 1, 2, . . . , K, (8.24)

where −90◦ ≤ ϑ0 ≤ 90◦, the array factor may be written as

Sa(ϑ) =
K∑

i=1

ejk0(K−i)d[sin(ϑ)−sin(ϑ0)]. (8.25)

For ϑ0 = 0, the phase taper is zero or non-existent and we encounter the linear broadside
array antenna situation. The maximum of the array factor was encountered in that situation
for ϑ = 0, or – more precisely – for sin(ϑ) = 0.

For the linear phased array antenna situation we now find the array factor maximum for

sin(ϑ) − sin(ϑ0) = 0, (8.26)

or, provided that −90◦ ≤ ϑ, ϑ0 ≤ 90◦, for ϑ = ϑ0.
So, by choosing a desired beam-pointing direction ϑ0 and subsequently phasing the

linear array antenna elements according to ψi = −k0(K − i)d sin(ϑ0), the array factor
will have its maximum at the desired angle ϑ = ϑ0.

Example
Consider a linear array antenna consisting of eight elements. The element voltage radiation
pattern is given by

Se(ϑ) = cos(ϑ). (8.27)

Given this hypothetical radiation pattern for an aperture element in an infinite ground
plane, calculate and show the element power radiation pattern, the array factor power
pattern and the power radiation pattern of the total array as a function of the angle ϑ

relative to the array normal (broadside) for the following element distances d:

1. d = λ0
4 ;

2. d = λ0
2 ;

3. d = λ0;

4. d = 5λ0
4 ,

for a phasing aimed at a beam pointing to ϑ0 = 30◦.
Using equations (8.21), (8.25) and (8.27) results in the radiation power patterns shown

in Figures 8.8–8.10, and 8.11 for, respectively, d = λ0
4 , d = λ0

2 , d = λ0 and d = 5λ0
4 . The
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Figure 8.8 Power radiation patterns of the element factor, the array factor and the total array of a
linear eight-element phased array antenna with element distance d = λ0

4 , phased for beam pointing
at ϑ0 = 30◦.
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Figure 8.9 Power radiation patterns of the element factor, the array factor and the total array of a
linear eight-element phased array antenna with element distance d = λ0

2 , phased for beam pointing
at ϑ0 = 30◦.
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Figure 8.10 Power radiation patterns of the element factor, the array factor and the total array of a
linear eight-element phased array antenna with element distance d = λ0, phased for beam pointing
at ϑ0 = 30◦.
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Figure 8.11 Power radiation patterns of the element factor, the array factor and the total array
of a linear eight-element phased array antenna with element distance d = 5λ0

4 , phased for beam
pointing at ϑ0 = 30◦.
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element power pattern is calculated as 20 log (|Se(ϑ)|), the normalized array factor power
pattern is calculated as 20 log (|Sa(ϑ)| /8) and the normalized power pattern of the total
array is calculated as 20 log (|Se(ϑ)| |Sa(ϑ)| /8).

As expected, the main beam in all situations points in the desired ϑ0 = 30◦ direction.
For an element distance of a quarter of a wavelength (Figure 8.8), the aperture size of
the array is rather small, resulting in a broad main beam and – although the array factor
points at exactly 30◦, the filtering effect of the element pattern means that the maximum
of the linear array main beam is at an angle ϑ slightly less than 30◦. We see that upon
increasing the element distance of the array, the beam gets narrower and, consequently,
the pointing of the beam gets more accurate. The narrowing of the beam is entirely due
to the fact that with the increase of the element distance the aperture size increases and,
since beamwidth is inversely proportional to aperture size, the beam gets narrower.

We also see that for an element distance of one wavelength and a beam directed
towards ϑ0 = 30◦, grating lobes are already well within the visible range (−90◦ ≤ ϑ ≤
90◦). Apparently, another condition applies for avoiding grating lobes in a linear phased
array antenna as compared to a linear broadside array antenna.

8.5 Grating Lobes

When we take a closer look at the array factor again, equation (8.25), we see that whenever

k0d [sin ϑ − sin ϑ0] = n2π, (8.28)

where n is an integer, the array factor repeats itself. The main beam is identified by
n = 0, and all other integer values of n identify grating lobes. The first grating lobe
(n = 1) satisfies

d

λ
= 1

(sin ϑ − sin ϑ0)
, (8.29)

where use has been made of k0 = 2π
λ

.
When a grating lobe (maximum) just appears at ϑ = ±90◦, the corresponding

sin ϑ value is ±1. The above equation for the first grating lobe then tells us that
grating lobes may be just or just not avoided if the element distance relative to the
wavelength satisfies

d

λ
≤ 1

1 + ∣∣sin ϑ0max

∣∣ , (8.30)

where ϑ0max is the maximum scan angle. The equality sign applies to the ‘just’ or ‘just not’
situation. For the equality sign, the maximum of the grating lobe is present at ϑ = ±90◦.
As with the non-scanning array antenna, for a scanning array antenna the grating lobe con-
dition should be applied more restrictively if also the slope of the first grating lobe should
be suppressed.

For ϑ0max = 0 (no scanning at all), we find d
λ

≤ 1. This is the situation we have already
encountered for the broadside linear array antenna. If, on the other hand, we do not want
a grating lobe maximum to be present in visible space for all possible scan angles, we
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should take ϑ0max = ±90◦, which will lead to

d

λ
≤ 1

2
. (8.31)

This explains the grating lobes we have seen for a scanning antenna in the example for
element distances exceeding half a wavelength.

When looking at the radiation patterns as a function of the angle ϑ relative to broadside,
we see – upon enlarging the element distance – grating lobes appearing at ϑ = ±90◦.
Upon further increasing the element distance, or scanning the beam further to endfire,
these grating lobes move from endfire direction closer to broadside direction. The range
−90◦ ≤ ϑ ≤ 90◦, corresponding to | sin(ϑ)| ≤ 1, is called the visible region . Grating lobes
enter the visible region coming from the invisible region .

8.6 Special Topics

In this section we will briefly discuss some topics that are beyond the array antenna basics
but that are important enough to be mentioned. We notice that (phased) array antenna
technology has evolved and is being transferred from the military and space world into
the consumer world and its products. Therefore, we will discuss some aspects related to
small and low-cost array antennas, such as diversity and sequential rotation techniques.
Before we do, we will first discuss mutual coupling , a phenomenon we have left out so
far in order not to obscure the discussion.

8.6.1 Mutual Coupling

So far we have been neglecting mutual coupling effects. As apparent from equations (8.5)
and (8.6) for example, we have assumed that within an array every element maintains
the radiation pattern it would have when completely isolated. In reality, this may be
a fair approximation when the antenna elements are not positioned too close together.
Theoretically and in practice, for closely spaced elements, this is not true however. When
two antennas are brought close together they will interact. This interaction or mutual
coupling , depends on the separation of the two elements, the orientation or polarization
and on the radiation characteristics.

When one or both antennas are transmitting, energy radiated by one of the antennas
will induce a current on the other antenna. This induced current will change the input
impedance of that antenna and, through reradiation, will change the radiation pattern of
that antenna. So in a finite array antenna,5 even if this array antenna consists of identi-
cal elements, each element will have a different input impedance and will demonstrate
different radiation characteristics. Mutual coupling effects depend heavily on the type of
radiator(s) being employed in the array antenna. Therefore, we cannot derive generalized
analytical expressions for the coupling effects. What we can do, however, is present a
qualitative description of the coupling effects [1].

5 A very large array antenna of identical elements may be considered as being infinite. In an infinite array, every
element experiences an identical environment and thus for every element the mutual coupling effects are identical.
For such an array, the principle of pattern multiplication can be used again, using the array element pattern [1]. An
array antenna is considered very large if the number of internal element outweighs the number of edge elements.
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1 2

I2V1

Figure 8.12 Two antennas close to each other. Antenna 1 is transmitting, antenna 2 is receiving.

Consider two antennas that do not have to be identical. We attach a voltage generator
V1 to antenna 1 and measure the current I2 induced in antenna 2 at the terminals of this
antenna, see Figure 8.12.

The ratio of voltage V1 to current I2, which has the dimension of impedance, we call
the transfer impedance or mutual impedance

V1

I2
= Z12. (8.32)

Similarly, for the situation where antenna 1 is receiving while antenna 2 is transmitting,
see Figure 8.13, we find

V2

I1
= Z21. (8.33)

By virtue of antenna reciprocity, see Chapter 4,

Z21 = Z12. (8.34)

We now consider the situation where we only have one antenna present – let’s say
antenna 1, excited by voltage generator V1. We measure the current I1 at its terminals
and define the input impedance as

Z11 = V1

I1
. (8.35)

2

V2

1

I1

Figure 8.13 Two antennas close to each other. Antenna 1 is receiving, antenna 2 is transmitting.
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We now bring antenna 2 into the neighborhood of antenna 1. Through radiation6 a
current I2 is induced in antenna 2 by antenna 1. This current I2 will cause (additional)
radiation from antenna 2 that will influence the current in antenna 1. This phenomenon
is known as mutual coupling .

The total voltage at antenna 1 may now be written as

V1 = Z11I1 + Z12I2, (8.36)

where Z11 and Z12 are defined as before:

Z11 = V1

I1

∣∣∣∣
I2=0

, (8.37)

Z12 = V1

I2

∣∣∣∣
I1=0

. (8.38)

Similarly

V2 = Z21I1 + Z22I2, (8.39)

where

Z21 = V2

I1

∣∣∣∣
I2=0

, (8.40)

Z22 = V2

I2

∣∣∣∣
I1=0

. (8.41)

We may generalize these equations for a two-element array antenna to a K-element
array antenna, resulting in:

V1 = Z11I1 + Z12I2 + · · · + Z1KIK

V2 = Z21I2 + Z22I2 + · · · + Z2KIK

...

VK = ZK1I1 + ZK2I2 + · · · + ZKKIK

, (8.42)

where

Zmn = Vm

In

∣∣∣∣
Ii=0,i �=n

. (8.43)

The input impedance Zm of the mth element in the array, accounting for all the mutual
coupling, is then given by

Zm = Vm

Im

= Zm1
I1

Im

+ Zm2
I2

Im

+ · · · + Zmn + · · · + ZmK

IK

Im

. (8.44)

This impedance is also known as the active impedance.

6 And in real situations, it will be through scattering from the feeding network of an array or scattering from nearby
objects.
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Since alternating current is the origin of electromagnetic radiation, the mutual coupling
will affect not only the input impedances of the elements in the array, but also their
radiation patterns. The mutual coupling effects will in general change with element posi-
tion, frequency and angle of radiation and will depend on the radiating element under
consideration. Thus, in general, the calculation of mutual coupling will be complicated
and will require the use of numerical techniques.

As an example we will show how the mutual coupling and radiation will change if we
decrease the distance between three identical microstrip patch elements in a linear array
antenna. The analysis will be performed by using CST-MWS.

Example
Consider a linear array of three identical microstrip patch antennas, resonant at 2.45 GHz,
see Figure 8.14.

The patches have a length (y-direction) of 29.1 mm and a width (x-direction) of
37.7 mm. The microstrip feeding line has a width of 3.3 mm, the inset feed gap length
is 7.4 mm and the width is 1 mm. The material of the patch is copper, having a thickness
of 70 μm. The grounded substrate is 1.6 mm thick FR4, having a relative permittivity of
4.28 and a loss tangent of 0.016. The spacing between the patches (right side patch to
left side subsequent patch) is 60 mm.

We will investigate the mutual coupling by looking at the scattering parameters
rather than the impedance parameters. Scattering parameters, like impedance parameters,
describe the characteristics of an electrical network. But instead of using open and short
circuits to do so, it uses matched terminations. These terminations are easier to realize at
microwave frequencies. The scattering parameters describe transmission and reflection

Figure 8.14 Linear array of three rectangular, inset feed, microstrip patch antennas as analyzed
in CST-MWS.
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Figure 8.15 In- and outgoing waves in a three-port network.

then in terms of wave amplitude and phase and can be measured directly. S-parameters
can be easily converted into Z-parameters (or Y -parameters) and the other way around,
see Appendix E.

We will describe the system as the three-port network shown in Figure 8.15. The
complex amplitudes of the ingoing waves are denoted ai , and those of the outgoing
waves are denoted bi , where i = 1, 2, 3. The outgoing and ingoing waves are related to
each other through the scattering parameters Sij , i, j = 1, 2, 3.

⎛
⎝ b1

b2

b3

⎞
⎠ =

⎛
⎝ S11 S12 S13

S21 S22 S23

S31 S32 S33

⎞
⎠ ·

⎛
⎝ a1

a2

a3

⎞
⎠ . (8.45)

The scattering parameters are defined by

S11 = b1
a1

∣∣∣
a2=a3=0

S12 = b1
a2

∣∣∣
a1=a3=0

S13 = b1
a3

∣∣∣
a1=a2=0

S21 = b2
a1

∣∣∣
a2=a3=0

S22 = b2
a2

∣∣∣
a1=a3=0

S23 = b2
a3

∣∣∣
a1=a2=0

S31 = b3
a1

∣∣∣
a2=a3=0

S32 = b3
a2

∣∣∣
a1=a3=0

S33 = b3
a3

∣∣∣
a1=a2=0

. (8.46)

S11 is therefore the reflection coefficient at port 1 when port 2 and 3 are not excited,
S22 is the reflection coefficient at port 2 when port 1 and 3 are not excited, S12 is the
transfer from port 2 to port 1 and so on.

The Z-matrix may be obtained from the S-matrix through

[Z] = [G]−1 · ([I ] − [S])−1 · ([S] + [I ]) · [Zch] · [G], (8.47)

where [Zch] is a diagonal matrix with characteristic impedances at the ports of the network

[Zch] =

⎡
⎢⎣

Zch1 0 0

0 Zch2 0

0 0 Zch3

⎤
⎥⎦ , (8.48)
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where [G] is the diagonal matrix

[G] =

⎡
⎢⎢⎣

1√
Re|Zch1| 0 0

0 1√
Re|Zch2| 0

0 0 1√
Re|Zch3|

⎤
⎥⎥⎦ , (8.49)

and where [I ] is the identity matrix

[I ] =
⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦ . (8.50)

For the array antenna shown in Figure 8.14, the scattering parameters as a function of
frequency are shown in Figure 8.16.

The figure shows a minimum reflection (S11, S22 and S33) – that is, the best matched
impedance – at the three antenna ports at the operational frequency. The coupling between
adjacent antennas (S12, S21, S23 and S32) is very low (< −30dB) and the coupling between
the side elements (S13 and S31) is even lower (< −40dB). As a result of this low coupling,
the radiation patterns of the three antennas within the array look identical, see Figure 8.17.

If we decrease the element-to-element spacing by 20 mm, the coupling values increase,
see Figure 8.18, but remain low. Another decrease of 20 mm further increases the coupling
values, see Figure 8.19, but the effect on the radiation patterns is marginal. Although the
effect on the radiation pattern is marginal, we do see from the reflection coefficients

Figure 8.16 Amplitudes of the scattering parameters of the array antenna shown in Figure 8.14.
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Figure 8.17 Element radiation patterns of the array antenna shown in Figure 8.14.

(S11, S22 and S33) that the input impedances of the three antennas have changed from
their isolated values. The mutual coupling changes the current densities on the antennas,
which is apparent immediately in the input impedance and thus the reflection coefficient.
The fact that it is not that clearly visible in the radiation pattern is due to the integration
of the surface current density over the antenna surface to obtain the radiated power. This
integration has a smoothing out effect on the changes in surface current density.

Finally, we decrease the element-to-element spacing to 2 mm, see Figure 8.20.
The coupling between adjacent antenna elements has now reached a level of approxi-

mately −10 dB, see Figure 8.21, and the coupling effects are now visible in the radiation
patterns, see Figure 8.22.

We do see that the radiation patterns of the two outward elements are symmetric with
respect to the yz-plane, as was to be expected.
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Figure 8.18 Amplitudes of the scattering parameters of the array antenna shown in Figure 8.14
with the element distance 20 mm decreased.

Figure 8.19 Amplitudes of the scattering parameters of the array antenna shown in Figure 8.14
with the element distance decreased by 40 mm.
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Figure 8.20 Linear array of three rectangular, inset feed, microstrip patch antennas as analyzed
in CST-MWS. Dimensions are similar to those in Figure 8.14 except for a 2 mm spacing between
the elements.

Figure 8.21 Amplitudes of the scattering parameters of the array antenna shown in Figure 8.20.
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Figure 8.22 Element radiation patterns of the array antenna shown in Figure 8.20.

8.6.2 Antenna Diversity

Array antennas have found their place in mobile communications. Not only as base station
antennas, which is obvious, but also inside mobile handsets. There they are employed for
antenna diversity, a technique in which two or more antennas are used to improve the
quality of a wireless link. This improvement is realized by combining or selecting antennas
for a maximum signal strength at reception in a multipath environment. Especially in urban
and indoor environments a line-of-sight between transmitter (base station) and receiver
(mobile handset) is not available and the received signal has undergone many reflections
along multiple paths before reaching the receiver. At each reflection, a phase shift may
be introduced. Through all the phase shifts and the time delays, the signals over the
multiple paths may interfere destructively at the receiver antenna location and result in
deep signal fade, causing loss of the transmission link. If two or more receiving antennas
are being used, each antenna will experience a different interference environment. If the
receiving antennas are displaced, differently oriented or have different receive patterns, it
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is likely that one of the antennas, or a subset of the antennas, will experience a signal of
sufficient strength.

Antenna diversity can take the form of:

Spatial diversity. By physically separating two or more antennas, multipath components
having different phases will be incident on the antennas. The distance between the
antennas is in the order of half a wavelength.

Polarization diversity. The employed receiver antennas are orthogonally polarized. The
multipath components will, in general, have undergone polarization changes upon trav-
eling through different media.

Radiation pattern diversity. Here the different directivities of the receive antennas will
take care of selecting different multipath components.

A more thorough description of antenna diversity may be found in [6].

8.6.3 Sequential Rotation and Phasing

In Chapter 7 we saw how a circularly polarized microstrip patch antenna may be designed.
Implementing this circularly polarized element into an array poses several challenges. First
of all, the dual, orthogonal and 90◦ phase delayed feeding takes up a fair amount of space
and may hinder the positioning of elements at distances that avoid the creation of grating
lobes. Creating the array feeding network in microstrip technology has the benefit of
a simple realization technique, but the drawback is of taking up space in between the
elements, as we will see in Section 8.7 for a linearly polarized array of microstrip patch
antennas. Furthermore, the feeding network is prone to coupling effects giving another
reason to keep the feeding network as uncomplicated as possible.

To overcome these drawbacks, we may create circular polarization by employing lin-
early polarized elements in an array configuration, where we rotate the elements and excite
them with a 90◦ phase shift. This technique, which basically consists of distributing the
dual, orthogonal and 90◦ phase delayed fed single element over an array, is known as
sequential rotation and phasing [7, 8].

We start the explanation of sequential rotation and phasing by using two linearly polar-
ized elements, placed a distance d apart on the x-axis of a Cartesian coordinate system,
see Figure 8.23 [1].

In the figure, the linear polarization directions are indicated by arrows, and the phasing
is given by the parameter ψ . In the yz-plane a circularly polarized element is created
by virtue of a perpendicular projection of the two linearly polarized elements. In the
xz-plane however, the phase difference starts to deviate from the required 90◦ for angles
ϑ starting to increase from broadside. This deviation is due to the additional phase delay
�ψ = k0d sin(ϑ) for observation directions other than broadside, as shown in Figure 8.24.

To partly overcome this drawback, we may expand the array into two directions, as
shown in Figure 8.25 [1]. We deliberately use the term partly since although the cir-
cular polarization is now improved in both principal planes, in the diagonal planes the
polarization deteriorates quickly when moving away from broadside (ϑ = 0).

In this book and thus also in the next example we will limit ourselves to linear array
antennas.
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Figure 8.23 Array antenna consisting of two linearly polarized elements, phased for a 90◦ phase
difference.
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Figure 8.24 Additional spatial phase delay in the xz-plane of the two-element array antenna
shown in Figure 8.23.

Example
We will construct a linear, sequentially rotated and phased array antenna consisting of
two elements, as depicted in Figure 8.23. For the linearly polarized element we will use
the dual polarized microstrip antenna of Figure 7.26 where we will leave one port open.
We will excite the elements with 100 � microstrip transmission lines. These lines will be
added, one lagging 90 degrees in phase (i.e. having an additional line length of a quarter
of a wavelength, see Appendix F), combining to 50 �. With this as a starting point, the
required configuration is obtained within a few iterations in CST Microwave Studio®,
compensating for coupling effects between transmission lines and microstrip patches. The
structure is shown in Figure 8.26.

The reflection as a function of frequency is shown in Figure 8.27.
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Figure 8.25 Array antenna consisting of four linearly polarized elements, phased for a 90◦ phase
difference in the principal planes. In the xz-plane and in the yz-plane a circularly polarized element
is created by virtue of perpendicular projection.

Figure 8.26 Linear array of two linearly polarized, sequentially rotated and phased microstrip
patch elements.
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Figure 8.27 Reflection as a function of frequency for the antenna shown in Figure 8.26.

Figure 8.28 LHCP radiation pattern at 2.45 GHz for the antenna shown in Figure 8.26.

The left-hand circularly polarized (LHCP) radiation pattern is shown in Figure 8.28,
the right-hand circularly polarized (RHCP) radiation patterns is shown in Figure 8.29.
Both patterns are evaluated at 2.45 GHz.

The radiation patterns clearly show that the array antenna, consisting of linearly polar-
ized elements, creates an LHCP radiation pattern. The figures also clearly demonstrate that



Array Antennas 217

Figure 8.29 RHCP radiation pattern at 2.45 GHz for the antenna shown in Figure 8.26.

the LHCP signal is dominant in the yz-plane and that the RHCP signal stays low in the
plane that is perpendicular to the linear array axis. In the xz-plane, the cross polarization
comes up rather fast when changing the aspect angle ϑ from perpendicular to grazing.

This is shown in more detail in the radiation pattern cuts for the yz-plane (ϕ = π
2 )

in Figures 8.30 and 8.31 and in the radiation pattern cuts for the xz-plane (ϕ = 0) in
Figures 8.32 and 8.33.

These two figures show that the LHCP radiation remains larger than the RHCP signal
for increasing angle ϑ in the yz-plane, that is the plane perpendicular to the linear array
axis. In this plane, no additional phase shift is added to the phase difference introduced
between the two elements. In the xz-plane, that is in the plane containing the linear array
antenna, the situation is different.

These Figures show that in the plane containing the array, moving away from broadside
adds an additional phase shift between the two elements. As a result, the cross polarized
(RHCP) signal increases in strength rapidly for increasing angle ϑ .

8.7 Array Antenna Design

For a certain application we want an antenna, operating at 2.45 GHz, having a gain that is
about four times that of a single microstrip patch antenna. The antenna beam needs to be
small in the horizontal direction and broad in the vertical direction. The input impedance
needs to be 50 �. The antenna needs to be realized as an electrically conducting pattern
on a grounded FR4 slab.

From the specifications given above, it is clear that the antenna may be realized as a
(horizontal) four-element linear array of microstrip patches. The patches will be fed by
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Figure 8.30 LHCP radiation pattern cut at 2.45 GHz in the yz-plane for the antenna shown in
Figure 8.26.

Figure 8.31 RHCP radiation pattern cut at 2.45 GHz in the yz-plane for the antenna shown in
Figure 8.26.
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Figure 8.32 LHCP radiation pattern cut at 2.45 GHz in the xz-plane for the antenna shown in
Figure 8.26.

Figure 8.33 RHCP radiation pattern cut at 2.45 GHz in the xz-plane for the antenna shown in
Figure 8.26.
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microstrip transmission lines and these lines will be combined in such a way that the power
delivered at a central feeding point will be evenly distributed over the four elements.

8.7.1 Theory

From the theory described in this chapter we know that, in order to avoid the occurrence
of grating lobes, the elements should not be placed further apart than one free-space
wavelength. In fact, we want the microstrip patch elements to be placed much closer
than a wavelength, so that we do not even ‘see’ the slope of the grating lobe appear
in the radiation pattern. So the width of the microstrip patch element should also be
less than one free space wavelength. Since the elements will thus be closely spaced,
the mutual coupling between the elements will not be negligible. Each radiating element
in the array couples electromagnetic energy to the surrounding elements. This mutual
coupling will change the impedance and radiation characteristics of the elements. In the
theory developed thus far, we assumed that all element patterns were identical, which
now turns out to be not true.7 We could include the individual element characteristics,
Sei(ϑ), in equation (8.5), but then we need to know the individual element characteristics.
The calculation of these characteristics is beyond the scope of this book. Therefore, in
the design of the array antenna we will make use of CST-MWS. We start by designing a
microstrip patch radiating element as we did before, that is we apply the aperture theory
to create an initial design and then fine-tune this design using the full-wave analysis
software. Then, we combine two of these elements in a sub-array, which we will fine-
tune for the frequency of 2.45 GHz and finally we will combine two of these sub-arrays
in the final array, which we – again – will fine-tune using CST-MWS.

The combination of elements and subarrays will be accomplished using a so-called
corporate feeding structure, see Figure 8.34.

The length of the microstrip patch antenna element, L, will be calculated as half the
wavelength in the FR4 substrate:

L = 1

2

λ0√
εr

, (8.51)

where λ0 is the wavelength in free space and εr is the relative permittivity of the substrate.

Figure 8.34 Four-element linear array with corporate feeding network.

7 At least, they are not identical if the elements are closely spaced. For wider spacings the mutual coupling effect
becomes less severe.
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The feeding network will be realized in microstrip transmission line technology. When
the characteristic impedance, Z0, of the transmission line is known, as well as the height,
d, of the substrate, the width, W , of the line can be calculated, using [2]

W

d
=

⎧⎪⎨
⎪⎩

8eA

e2A−2
for W

d
< 2,

2
π

[
B − 1 − ln(2B − 1) + εr−1

2εr

{
ln(B − 1) + 0.39 − 0.61

εr

}]
for W

d
> 2.

,

(8.52)

where

A = Z0

60

√
εr + 1

2
+ εr − 1

εr + 1

(
0.23 + 0.11

εr

)
, (8.53)

and

B = 377π

2Z0
√

εr

. (8.54)

Although we want our array antenna to have a ‘standard’ 50 � input impedance,8 this
does not mean that all our microstrip transmission line sections in the feeding network
will have a 50 � characteristic impedance. At every T-splitter in the feeding network, see
Figure 8.34, the characteristic impedance of the outgoing lines – and hence the impedance
of the attached loads – should be twice the value of the characteristic impedance of the
input line. Then, the parallel impedances at the output equal the impedance at the input
and impedance matching is achieved.

If, however, we start at the input of the array antenna with 50 �, we end up with
transmission lines having a characteristic impedance of 200 �. Equations (8.52)–(8.54)
then learn that for a 1.6 mm thick FR4 substrate with εr = 4.28, the line width becomes
48.5 μm. This value is difficult to realize with standard photo-etching techniques. There-
fore we choose to design the microstrip patch radiators to have an input impedance of
100 � and only use microstrip transmission lines having a characteristic impedance of
50 � or 100 �. The line widths we have to deal with are then 3.1 mm and 0.84 mm, respec-
tively. Within the feed network, impedance transformers – converting 50 � to 100 � and
vice versa – then need to be applied. The details of these transformers will be discussed
in the following section.

8.7.2 A Linear Microstrip Patch Array Antenna

We start with the design of a single microstrip patch radiator. Then we will combine two
of these into a two-element sub-array and finally we will combine two of these sub-arrays
to form the final array.

8 Most microwave hardware is specified for an input or output impedance of 50 �. This specific value is a round-off
compromise between the optimum impedance value for power handling (30 �) and the optimum impedance value
for low loss (77 �) in air-dielectric coaxial cables [3].
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8.7.2.1 Microstrip Patch Radiator

We will use an edge-feed microstrip antenna, see Figure 8.35(a). Although a microstrip
inset feed, as shown in Figure 8.35(b) would lead to a more compact radiator, we choose
the edge-feed for ease of construction.

The length of the microstrip radiator will be tuned for resonance at a frequency of
2.45 GHz. The width of the antenna will be used to tune the input impedance.

We start with an antenna having a length following from equation (8.32): L = 28 mm.
We take the identical width and use a microstrip transmission line, having a width of
0.84 mm. With the use of CST-MWS we first tune the width of the transmission line,
by looking at the port impedance and then, in a few iterations, we tune the length and
width of the microstrip patch antenna for an impedance match to 100 � at a frequency of
2.45 GHz. The length of the patch then becomes 28 mm, the width of the patch becomes
52 mm and the width of the transmission line becomes 0.80 mm. Figure 8.36 shows a
screenshot of the radiating element and Figure 8.37 shows the reflection coefficient (in
dB) as a function of frequency, relative to 100 �:

|S11| (dB) = 20 log

∣∣∣∣ZAnt − 100

ZAnt + 100

∣∣∣∣(dB). (8.55)

We will consider reflection levels below −10 dB as acceptable. Figure 8.37 then shows
that the antenna is acceptable for frequencies ranging (roughly) from 2.4 to 2.45 GHz.
The radiation pattern at 2.45 GHz is shown in Figure 8.38.

The radiation pattern shows that neither the microstrip transmission line nor the finite-
sized ground plane causes disturbances in the radiation pattern. The radiation efficiency is
about 52% . The reason for this rather low efficiency is the use of lossy FR4 for substrate
instead of using a dedicated microwave laminate.

8.7.2.2 Two-Element Sub-Array

We will now combine two single microstrip patch radiators into a two-element sub-array.
There, two identical radiators are placed next to each other. The placing is not too close,
to minimize mutual coupling effects but is also restricted to a maximum distance of

(a) (b)

Figure 8.35 Rectangular microstrip patch antenna top view. (a) Edge microstrip feed. (b) Inset
microstrip feed.
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Figure 8.36 Layout of a single, rectangular microstrip patch antenna, edge-excited with a 100 �

microstrip transmission line.

Figure 8.37 Reflection coefficient of a single microstrip patch antenna as a function of frequency.



224 Antenna Theory and Applications

Figure 8.38 Radiation pattern of a single microstrip patch antenna at 2.45 GHz.

one free space wavelength, see equation (8.19). Crossing this one free space wavelength
border would result in the creation of grating lobes in the radiation pattern. The 100 �

transmission lines of the individual radiators are combined to form (together with the
100 � radiators) a 50 � load to the 50 � transmission line, connected to the junction of
the 100 � transmission lines. As shown in [4], 90 degree angles in the transmission lines
will not give rise to serious radiation, so 90 degree angles have been applied in the feeding
network of the two-element sub-array without applying miters, that is cutting the corners.
The two-element sub-array, obtained after a few iterations in CST-MWS, is shown in
Figure 8.39. In the first iterations, the 50 � transmission line width has been tuned to
a value of 3.3 mm. In the subsequent iterations, a center-to-center distance between the
patches of 30.4 mm has been obtained.

Figure 8.40 shows the reflection coefficient (in dB), relative to 50 �, as a function of
frequency:

|S11| (dB) = 20 log

∣∣∣∣ZAnt − 50

ZAnt + 50

∣∣∣∣(dB). (8.56)

The figure shows that the mutual coupling has worked to our advantage and has broad-
ened the −10 dB bandwidth with respect to a single radiator. The radiation pattern of the
two-element sub-array is shown in Figure 8.41.

As expected, the radiated beam has become narrower in the horizontal direction. The
gain enhancement is less than a factor two. This is due to the losses in the FR4 substrate.

Before we combine two of these sub-arrays into the final array, we need to discuss
the design of an impedance transformer with which we will transform the 50 � input
impedance of the two-element sub-array to 100 �.
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Figure 8.39 Layout of a two-element sub-array with 50 � to two times 100 � feeding network.

Figure 8.40 Reflection coefficient of a two-element sub-array as a function of frequency.
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Figure 8.41 Radiation pattern of a two-element sub-array of microstrip patch antennas at
2.45 GHz.

8.7.2.3 Microstrip Impedance Transformer

At the input of the two-element sub-array we have created – in the frequency band of
interest – an input impedance of 50 �. If we were to combine two of these sub-arrays,
we would end up, at the input of the T-splitter, with an input impedance of 25 �. As
explained before, we want to restrict ourselves to microstrip transmission lines of 50 �

and 100 � only. Therefore we need to employ a so-called impedance transformer, see
Figure 8.42.

This impedance transformer, known as the quarter lambda transformer , consists of
a transmission line of length λg

4 , where λg is the wavelength in the medium of the
transmission line, having a characteristic impedance Z0 that is given by [5]

Z0 =
√

Z01Z02, (8.57)

where Z01 and Z02 are the characteristic impedances of the two transmission lines that
need to be impedance matched.

8.7.2.4 Final Array

The splitter/combiner network joining the two two-element sub-arrays, realized in
microstrip technology, will have a top view as shown in Figure 8.43.

With the shown splitter/combiner, the line lengths in 50 � and 100 � can be freely
chosen. Only the lengths of the

√
100 · 50 = 71 � transmission line sections need to be

kept constant. This makes the creation of the final array very easy. We maintain the
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(a)

Z01 Z0

lg/4

Z02

(b)

Figure 8.42 (Quarter lambda) impedance transformer. (a) Schematic view. (b) Top view of a
microstrip quarter wavelength transformer.

50 Ω input impedance

To two-element sub-array To two-element sub-array

50 Ω50 Ω

71 Ω

100 Ω

71 Ω

lg/4 lg/4

Figure 8.43 Top view of a microstrip 50–100 � splitter/combiner circuit.

element spacing by positioning the second two-element sub-array and get a layout as
shown in Figure 8.44. The transformer section length and width have been tuned to
20 mm and 1.6 mm, respectively.

In Figure 8.45 we show the reflection coefficient as a function of frequency, and the
radiation pattern of the array antenna is shown in Figure 8.46.

With respect to the two-element sub-array, we see that the −10 dB frequency bandwidth
has decreased a bit. This must be due to the narrowband behavior of the quarter lambda
impedance transformer. The beam of the array antenna has further narrowed with respect
to the two-element sub-array. The gain increase, however, is less than a factor two, due
to the losses in the FR4 substrate.
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Figure 8.44 Layout of the final four-element, 50 � microstrip patch array antenna.

Figure 8.45 Reflection coefficient of a four-element microstrip patch array antenna as a function
of frequency.
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Figure 8.46 Radiation pattern of a four-element microstrip patch array antenna at 2.45 GHz.

8.8 Problems

8.1 Consider a linear array antenna consisting of four isotropic radiators, equally spaced
by a distance d. A plane wave is incident on the array at an angle ϑ with respect to
the array normal, in the plane of the array.
(a) What are the path lengths the plane wave has to travel to the different, elements

with respect to the first element encountered by the wave?
(b) What are the phases of the signals received by the elements relative to that same

element?

8.2 Consider the array of problem 8.1. Draw, in a rectangular plot and on a logarithmic
scale, the radiation pattern cut in the plane of the array for
(a) d = λ0

2 .
(b) d = λ0.
(c) d = 3λ0

2 .

8.3 Consider the array of problem 8.1 and replace the isotropic radiators by half- wave
dipole antennas, positioned perpendicular to the array axis and parallel to the plane of
incidence (i.e. z-directed dipoles for a linear array on the x-axis the xz-plane being
the plane of incidence). Draw, in a rectangular plot and on a logarithmic scale, the
radiation pattern in the plane of incidence for d = λ0.

8.4 Consider the array of problem 8.1 and replace the isotropic radiators by dipole anten-
nas, slightly shorter than half a wavelength, positioned parallel to the array axis (i.e.
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x-directed dipoles for a linear array on the x-axis). Draw, in a rectangular plot and
on a logarithmic scale, the radiation pattern in the plane of incidence for
(a) d = λ0

2 .
(b) d = λ0.
(c) d = 3λ0

2 .

8.5 What is the difference between a side lobe and a grating lobe?

8.6 Consider a linear array consisting of four isotropic radiators, equally spaced by a
distance d. Every element is equipped with a continuously adjustable phase shifter.
Determine the required element phase shifts for pointing the array beam to the direc-
tion ϑ0, relative to the array normal.

8.7 Consider the array antenna of problem 8.6. For ϑ0 = π
6 , draw in a rectangular plot,

on a logarithmic scale, the radiation in the plane containing the array for
(a) d = λ0

2 .
(b) d = λ0.
(c) d = 3λ0

2 .

8.8 What is diversity? Name and describe three types of diversity.
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Appendix A

Effective Aperture and Directivity1

The effective aperture of an antenna is uniquely related to its directivity. By using the directivity
and effective aperture of a short dipole, which are relatively easily calculated, a general interrelation
between effective aperture and directivity, valid for any antenna, will be derived.

Consider the two-antenna communication system of Figure A.1. System 1 can be the
transmitter, while system 2 is the receiver, or the other way around. The antennas are
displaced a distance r apart and are assumed to be lined up with respect to polarization and
directivity. The directivity of antenna 1 is DT , its maximum effective aperture is AemT .
Directivity and maximum effective area of antenna 2 are, respectively, DR and AemR . We
start by considering the first option: antenna 1 is transmitting and antenna 2 is receiving.

The total radiated power by antenna 1 is PT . If antenna 1 were an isotropic radiator,
the power density, S0, at distance r from antenna 1 would be

S0 = PT

4πr2
. (A.1)

Due to the directive properties of antenna 1 , the actual power density, ST at distance
r is

ST = S0DT = PT DT

4πr2
. (A.2)

The power received by antenna 2 , PR is then

PR = ST AemR = PT DT AmeR

4πr2
, (A.3)

1 Portions of text in this Appendix have been reproduced from: Visser, H. ‘Array and Phased Array Antenna
Basics’. This includes the following text: The effective (p. 231) . . . of an antenna (p. 233). Reproduced with
permissions from John Wiley & Sons, Ltd.

Antenna Theory and Applications, First Edition. Hubregt J. Visser.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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AemT

DT

1 2

r

AemR

DR

Figure A.1 Two-antenna communication system. The antennas are displaced a distance r and are
assumed to be lined up with respect to polarization and directivity. The directivity of antenna 1 is
DT , its effective aperture is AemT . Directivity and effective area of antenna 2 are, respectively, DR

and AemR .

where AemR is the maximum effective aperture of antenna 2 . Rearranging this
equation gives

DT AemR = PR

PT

(
4πr2

)
. (A.4)

If we now let antenna 2 transmit PT and we look at the received power at antenna 1 ,
which, by virtue of reciprocity, is equal to PR , we find

DRAemT = PR

PT

(
4πr2

)
, (A.5)

so

DT

AemT

= DR

AemR

. (A.6)

If we now assume that in the two-antenna system, the transmitting antenna is an
isotropic radiator, then DT = 1 and the above equation transforms into

AemISO
= AemR

DR

, (A.7)

which means that

the maximum effective aperture of an isotropic radiator is equal to the ratio of
effective aperture and directivity of any antenna .
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If we now take, for example, a short dipole, we may relatively easily calculate the
effective area and directivity as, see Section 2.4.1,

Aem = 3

8π
λ2, (A.8)

D = 3

2
, (A.9)

where λ is the used wavelength. Therefore the maximum effective area of an isotropic
radiator is

AemISO
= λ2

4π
, (A.10)

and thus for any antenna

λ2

4π
= Aem

D
. (A.11)

This gives us the sought-after relation between maximum effective aperture, Aem, and
directivity, D, of an antenna

D = 4πAem

λ2
. (A.12)



Appendix B

Vector Formulas

Although the material provided in Chapter 3 should be sufficient to manipulate any vector formula
that will be encountered in antenna theory, it will be convenient to have a list of most commonly
used vector formulas. A selection of these is presented in this appendix.

In the following we will make use of the vectors A, B and C and the scalars � and �.
We start by writing the gradient, divergence and curl operations in rectangular

coordinates:

grad� = ∇� = ûx

∂�

∂x
+ ûy

∂�

∂y
+ ûz

∂�

∂z
, (B.1)

divA = ∇ · A = ∂Ax

∂x
+ ∂Ay

∂y
+ ∂Az

∂z
, (B.2)

curlA = ∇ × A

= ûx

(
∂Az

∂y
− ∂Ay

∂z

)
+ ûy

(
∂Ax

∂z
− ∂Az

∂x

)
+ ûz

(
∂Ay

∂x
− ∂Ax

∂y

)
. (B.3)

Also

∇2� = ∂2�

∂x2
+ ∂2�

∂y2
+ ∂2�

∂z2
, (B.4)

∇2A = ûx∇2Ax + ûy∇2Ay + ûz∇2Az. (B.5)

A list of useful vector identities is given below:

∇ (� + �) = ∇� + ∇�, (B.6)

∇ · (A + B) = ∇ · A + ∇ · B, (B.7)

∇ × (A + B) = ∇ × A + ∇ × B. (B.8)
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∇ (��) = �∇� + �∇�, (B.9)

∇ · (�A) = A · ∇� + �∇ · A, (B.10)

∇ × (�A) = ∇� × A + �∇ × A. (B.11)

∇ · (A × B) = B · ∇ × A − A · ∇ × B, (B.12)

∇ × (A × B) = A∇ · B − B∇ · A + (B · ∇) A − (A · ∇) B, (B.13)

∇ (A · B) = (A · ∇) B + (B · ∇) A + A × (∇ × B) + B × (∇ × A) . (B.14)

∇ · ∇� = ∇2�, (B.15)

∇ · ∇ × A = 0, (B.16)

∇ × ∇� = 0, (B.17)

∇ × ∇ × A = ∇ (∇ · A) − ∇2A. (B.18)

A · B × C = B · C × A = C · A × B, (B.19)

A × (B × C) = B (A · C) − C (A · B) . (B.20)



Appendix C

Complex Analysis

The use of complex variables in solving problems in the applied sciences, as in electrical engineering,
appears to be a very valuable tool. Especially when dealing with sinusoidal excitations, the intro-
duction of complex variables will simplify the solution process. Before this simplification is fully
appreciated though, we have to deal first with the somewhat awkward concept of complex numbers.

C.1 Complex Numbers

We are all familiar with the real numbers and the permitted and non-permitted operations
on real numbers. So, it is, for example, permitted to calculate the square root of the
number 3.79 (

√
3.79 = 1.95), but the square root of −4 does not exist.

The complex numbers allow for the last square root to exist, through the introduction of
so-called imaginary numbers alongside the real numbers. Any complex number consists
of a real part and an imaginary part and is generally denoted as

c = a + jb, (C.1)

where c is a complex number, a is the real part of the complex number

a = �(c), (C.2)

and b is the imaginary part of the complex number

b = �(c). (C.3)

j is the imaginary unit1 that exhibits the special characteristic

j 2 = −1. (C.4)

1 Mathematicians and physicists use the symbol i for the imaginary unit, but since in electrical engineering this
symbol is already reserved for current, electrical engineers use the symbol j instead.
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Before we move on to the arithmetic concerning complex numbers, we first define the
complex conjugate of a complex number.

The complex conjugate of a complex number c, denoted c∗, is defined by replacing j

by −j everywhere in the complex number. So, if

c = a + jb, (C.5)

then

c∗ = a − jb, (C.6)

The addition and subtraction of complex numbers is straightforward. If c = a + jb and
d = e + jf , then

c + d = a + jb + e + jf = (a + e) + j (b + f ), (C.7)

c − d = a + jb − (e + jf ) = (a − e) + j (b − f ). (C.8)

Multiplication makes use of the special characteristic of the imaginary unit

e · (a + jb) = ea + jeb, (C.9)

(e + jf ) · (a + jb) =
ea + jeb + jaf + j 2f b =

(ea − f b) + j (eb + af ). (C.10)

Multiplication of a complex number with its complex conjugate results in

cc∗ = (a + jb)(a − jb)

= a2 + jab − jab − j 2b2

= a2 + b2

= |c|2. (C.11)

For division, use is made of the complex conjugate. If c = a + jb and d = e + jf , then

c

d
= cd∗

dd∗

= (a + jb)(e − jf )

e2 + f 2

= ae + bf

e2 + f 2
+ j

be − af

e2 + f 2
(C.12)

Complex numbers may be graphically represented in the complex plane, see Figure C.1.
The real part of a complex number is plotted along the horizontal axis, and the imaginary

part of the complex number, multiplied by j , is plotted along the vertical axis.
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Im

Re

(x1,y1)

(x2,y2)

x1

q2

q1

x2 r2

r1

jy1

jy2

Figure C.1 Complex numbers (x1, y1) and (x2, y2) in the complex plane.

Another way of representing complex numbers instead of using Cartesian coordinates
is using polar coordinates. For z1 = x1 + jy1, see Figure C.1, the polar form is

z1 = r1
[
cos (ϑ1) + j sin (ϑ1)

]
, (C.13)

where

r = |z1| , (C.14)

and

ϑ1 = arctan

(� (z1)

� (z1)

)
. (C.15)

If we differentiate the expression of z1 to ϑ1, we get

dz1

dϑ1
= r1

[− sin (ϑ1) + j cos (ϑ1)
]

= jr1
[
cos (ϑ1) + j sin (ϑ1)

]
= jz1, (C.16)

and therefore

z1 = r1
[
cos (ϑ1) + j sin (ϑ1)

]
= r1e

jϑ1 . (C.17)

As a final check, we verify that

z∗
1 = r1e

−jϑ1, (C.18)

and therefore

z∗z = r2
1 . (C.19)
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C.2 Use of Complex Variables

Let us first look at an electric capacitor, C. The current ‘through’ a capacitor, i, is
described as function of the voltage, v, across the capacitor

i = C
dv

dt
. (C.20)

Now, assume that we are dealing with sinusoidal signals (currents and voltages)

v = V1 cos(ωt), (C.21)

where ω = 2πf is the angular frequency.
The current ‘through’ the capacitor is now given by

i = C
d

dt
[V1 cos(ωt)]

= −V1Cω sin(ωt). (C.22)

Next, we look at an inductor, L. The voltage across the inductor, v, is described as
function of the current, i, through the inductor

v = L
di

dt
. (C.23)

For sinusoidal signals, i = I1 cos(ωt),

v = L
d

dt
[I1 cos(ωt)]

= −I1Lω sin(ωt). (C.24)

If we work with complex signals, we get for the capacitor

v = � (
V1e

jωt
)
, (C.25)

i = C�
(

d

dt
V1e

jωt

)

= C� (
jωV1e

jωt
)

= −V1Cω sin(ωt), (C.26)

and for the inductor

i = � (
I1e

jωt
)
, (C.27)

v = L�
(

d

dt
I1e

jωt

)

= L� (
jωI1e

jωt
)

= −I1Lω sin(ωt), (C.28)
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We see that for the complex signals the operator d
dt

is replaced by the multiplication
by jω.

Therefore, we can define a complex impedance for the capacitor as

ZC = V1e
jωt

jCωV1ejωt

= 1

jωC
. (C.29)

Similarly, we may define a complex impedance for the inductor as

ZL = jLωI1e
jωt

I1ejωt

= jωL. (C.30)

To show the ease of working with complex signals, we will calculate the input
impedance of a parallel circuit consisting of a resistor, R, an inductor, L, and a capacitor,
C, see Figure C.2.

The complex input admittance Yin is

Yin = 1

R
+ 1

jωL
+ jωC

= 1

R
− j

1

ωL

(
1 − ω2LC

)
, (C.31)

and the complex input impedance is therefore found to be

Zin = 1

Yin

= 1
1
R

− j 1
ωL

(
1 − ω2LC

)

= R

1 − j R
ωL

(
1 − ω2LC

)

= R
[
1 + j R

ωL

(
1 − ω2LC

)]
1 + R2

ω2L2

(
1 − ω2LC

)2 . (C.32)

R L C

Figure C.2 Parallel electric circuit consisting of resistor R, inductor L and capacitor C.



242 Antenna Theory and Applications

Finally, the ‘real-world’ input resistance is found as the real part of the complex input
impedance

Rin = � {Zin}

= R

1 + R2

ω2L2

(
1 − ω2LC

)2 . (C.33)

The phase is found to be, see also Figure C.2

�Rin = arctan

( � {Zin}
� {Zin}

)

= 1

ωL

(
1 − ω2LC

)
. (C.34)

We see that the calculation of the input resistance of the parallel circuit, using complex
numbers, is really straightforward, while a direct solution based on time-derivatives of
real sinusoidal currents and voltages would have been far more complicated.

So, the general idea in dealing with a sinusoidal excitation, Sin (voltage or current) is to
create a complex number, Sc

in, such that � {
Sc

in

} = Sin (or � {
Sc

in

} = Sin), then calculate the
response of the complex signal, Sc

out – which is easy since time-derivatives are replaced by
multiplications by jω – and finally extract the real response, Sout by taking Sout = � {

Sc
out

}
(or Sout = � {

Sc
out

}
).



Appendix D

Physical Constants and Material
Parameters

Throughout the text we have used several physical constants, such as the velocity of light in free
space. In the examples we have been using non-perfect electrically conducting metals such as copper
and have used dielectric materials. For convenience, in this appendix we have grouped the physical
constants used in this book and have provided a list of material properties frequently encountered.

The physical constants used frequently within this book are

• permittivity of free space: ε0 = 8.854 · 10−12 Fm−1

• permeability of free space: μ0 = 4π · 10−7 Hm−1

• velocity of light in free space: c0 = 2.998 · 108 ms−1

• impedance of free space: η0 = 376.7 ≈ 120π�

The electrical conductivities of some commonly used metals and liquids at room temper-
ature are given in Table D.1.

Table D.1 Electrical conductivities of some common
metals and fluids

Material Conductivity Sm−1

aluminum 3.816 · 107

copper 5.813 · 107

gold 4.098 · 107

iron 1.03 · 107

lead 4.56 · 106

nickel 1.449 · 107

stainless steel 1.1 · 106

solder 7.0 · 106

distilled water 2 · 10−4

sea water 4
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Table D.2 Dielectric constants and loss tangents of some materials

Material Relative Permittivity εr Loss Tangent tan δ

FR4 (3 GHz) 4.28 0.016
glass Pyrex (3 GHz) 4.82 0.0054
plexiglas (3 GHz) 2.60 0.0057
polyethylene (10 GHz) 2.25 0.0004
polystyrene (10 GHz) 2.54 0.00033
silicon (10 GHz) 11.9 0.004
styrofoam 103.7 (3 GHz) 1.03 0.0001
Teflon (10 GHz) 2.08 0.0004
water distilled (3 GHz) 76.7 0.157

The dielectric constants and loss tangents of some materials are given in Table D.2
[1–3].
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Appendix E

Two-Port Network Parameters

A microwave network with two terminals may be analyzed by considering the network as an
equivalent two-port. The signals at the terminals or ports of the two-port may be described in
terms of voltages and currents and the interaction between these signals in terms of impedances or
admittances. Alternatively, the signals may be described in terms of incident and reflected waves
and the interaction in terms of scattering.

An arbitrary two-port may be described in several ways. Here we will discuss the two-
port in terms of impedance parameters (Z), admittance parameters (Y), chain or ABCD
parameters and scattering parameters (S).

For the description in terms of Z, Y or ABCD parameters we refer to Figure E.1(a).
For the description in terms of S parameters we refer to Figure E.1(b).

The relation between the voltages and currents in terms of impedance parameters is
given by (

V1

V2

)
=

(
Z11 Z12

Z21 Z22

) (
I1

I2

)
. (E.1)

The relation between the currents and voltages in terms of admittance parameters is
given by (

I1

I2

)
=

(
Y11 Y12

Y21 Y22

) (
V1

V2

)
. (E.2)

(a) (b)

I1

1 2V1 V2

I2 a1 a2

1 2b1 b2

Figure E.1 Two-port definition. (a) Using voltages and currents. (b) Using incident and reflected
waves.
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Table E.1 Two-port parameter conversion for voltage- and
current-based matrices

Z Y ABCD

Z
Z11 Z12

Z21 Z22

Y22
|Y | − Y12

|Y |

− Y21
|Y |

Y11
|Y |

A
C

AD−BC
C

1
C

D
C

Y

Z22
|Z| −Z12

|Z|

−Z21
|Z|

Z11
|Z|

Y11 Y12

Y21 Y22

D
B

BC−AD
B

− 1
B

A
B

ABCD

Z11
Z21

|Z|
Z21

1
Z21

Z22
Z21

− Y22
Y21

− 1
Y21

− |Y |
Y21

− Y11
Y21

A B

C D

Table E.2 Two-port parameter conversion for scattering and
voltage- and current-based matrices

S Z

S
S11 S12

S21 S22

(Z11−Z0)(Z22+Z0)−Z12Z21
�Z

2Z12Z0
�Z

2Z21Z0
�Z

(Z11+Z0)(Z22−Z0)−Z12Z21
�Z

S Y

S
S11 S12

S21 S22

(Y0−Y11)(Y0+Y22)+Y12Y21
�Y

− 2Y12Y0
�Y

− 2Y21Y0
�Y

(Y0+Y11)(Y0−Y22)+Y12Y21
�Y

S ABCD

S
S11 S12

S21 S22

A+ B
Z0

−CZ0−D

A+ B
Z0

+CZ0+D

2(AD−BC)

A+ B
Z0

+CZ0+D

2
A+ B

Z0
+CZ0+D

−A+ B
Z0

−CZ0+D

A+ B
Z0

+CZ0+D

The relation between the voltages and currents in terms of chain parameters is given by

(
V1

I1

)
=

(
A B

C D

) (
V2

−I2

)
. (E.3)

Chain matrices are used when several two-ports are cascaded. The overall chain matrix
is obtained by multiplying the chain matrices of the individual two-ports.
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Table E.3 Two-port parameter conversion for scattering and
voltage- and current-based matrices

S

S
S11 S12

S21 S22

Z
Z0

(1+S11)(1−S22)+S12S21
(1−S11)(1−S22)−S12S21

Z0
2S12

(1−S11)(1−S22)−S12S21

Z0
2S21

(1−S11)(1−S22)−S12S21
Z0

(1−S11)(1+S22)+S12S21
(1−S11)(1−S22)−S12S21

Y
Y0

(1−S11)(1+S22)+S12S21
(1+S11)(1+S22)−S12S21

−Y0
2S12

(1+S11)(1+S22)−S12S21

−Y0
2S21

(1+S11)(1+S22)−S12S21
Y0

(1+S11)(1−S22)+S12S21
(1+S11)(1+S22)−S12S21

ABCD

(1+S11)(1−S22)+S12S21
2S21

Z0
(1+S11)(1+S22)−S12S21

2S21

1
Z0

(1−S11)(1−S22)−S12S21
2S21

(1−S11)(1+S22)+S12S21
2S21

The relation between the incident and reflected waves is given by(
b1

b2

)
=

(
S11 S12

S21 S22

) (
a1

a2

)
. (E.4)

The Z, Y, ABCD and S matrices may be converted into each other. The interrelations
between the voltage- and current-based matrices are given in Table E.1.

The interrelations between the scattering and voltage- and current-based matrices are
given in Tables E.2 and E.3.



Appendix F

Transmission Line Theory

At microwave frequencies, the wavelengths have become so small that the physical dimensions of
transmission lines and even those of lumped elements, such as resistors, capacitors and inductors,
are in the order of these wavelengths. This means that at these frequencies we have to consider
effects of waves, such as standing waves and reflections. Depending on the type of transmission
line under consideration, these effects may be best characterized by employing a field description
or employing a circuit description. In this appendix we will limit ourselves to a circuit description
of transmission lines.
The microwave frequency range is somewhat arbitrary, but in practice, frequencies between
300 MHz and 30 GHz may be considered as being in the microwave spectrum.

F.1 Distributed Parameters

A general long (i.e. long with respect to wavelength) two-wire transmission line may be
characterized by distributed transmission line parameters, see Figure F.1.

Here R is the sum of resistances in both conductors per unit of length, G is the
conductivity per unit of length, L is the self-inductance per unit of length and C is the
capacitance per unit of length.

When the distributed transmission line parameters are known, the characteristic
impedance, Z0, and propagation constant, γ0, may be calculated as

Z0 =
√

R + jωL

G + jωC
, (F.1)

γ0 =
√

(R + jωL)(G + jωC). (F.2)

We will demonstrate this, as well as state the definitions for characteristic impedance
and propagation constant, using an infinitesimal length, �z, of transmission line as shown
in Figure F.2.
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G C G C

R L R L

Figure F.1 Distributed transmission line parameters in a general long two-wire transmission line.

+

−

V(z, t) V(z+ Δz, t)

R Δz L Δz

Δ I

G Δz C Δz

+

−
z z+Δz

Figure F.2 Equivalent network for an infinitesimal length of transmission line.

Applying the Kirchhoff voltage law to the circuit of Figure F.2 gives

V (z, t) = R�zI (z, t) + L�z
∂I (z, t)

∂t
+ V (z + �z, t), (F.3)

or, after rearranging terms,

−V (z + �z, t) − V (z, t)

�z
= RI (z, t) + L

∂I (z, t)

∂t
. (F.4)

In the limit �z → 0, this equation reduces to

−∂V (z, t)

∂z
= RI (z, t) + L

∂I (z, t)

∂t
. (F.5)

Next, applying the Kirchhoff current law to the circuit of Figure F.2 gives

I (z, t) = I (z + �z, t) + �I

= I (z + �z, t) + G�zV (z + �z, t) + C�z
∂V (z + �z, t)

∂t
, (F.6)

which may be written as

−I (z + �z, t) − I (z, t)

�z
= GV (z + �z, t) + C

∂V (z + �z, t)

∂t
. (F.7)
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In the limit �z → 0, this equation reduces to

−∂I (z, t)

∂z
= GV (z, t) + C

∂V (z, t)

∂t
. (F.8)

If we now suppose time harmonic signals, that is signals having a (co)sinusoidal time-
dependency, we may describe the voltages and currents using complex quantities:

V (z, t) = � {
Vs(z)e

jωt
}
, (F.9)

I (z, t) = � {
Is(z)e

jωt
}
, (F.10)

where � {x} means the real part of complex argument x. The parameter ω = 2πf is the
angular frequency, where f is the frequency.

Substitution of equations (F.9) and (F.10) into equations (F.5) and (F.8) gives

−dVs

dz
= (R + jωL)Is, (F.11)

−dIs

dz
= (G + jωC)Vs. (F.12)

Taking the derivative to z of equation (F.11) and substituting equation (F.12) into that
equation yields

d2Vs

dz2
= (R + jωL)(G + jωC)Vs. (F.13)

This equation may be written as

d2Vs

dz2
− γ 2Vs = 0, (F.14)

where
γ = α + jβ =

√
(R + jωL)(G + jωC). (F.15)

Equation (F.14) is known as the wave equation or Helmholtz equation , γ is known as
the propagation constant . The propagation constant consists of an attenuation constant ,
α, and a phase constant , β, where β = 2π

λ
, λ being the wavelength.

For the current, a wave equation of identical form may be derived

d2Is

dz2
− γ 2Is = 0. (F.16)

Solutions of the Helmholtz equations for voltage and current are

Vs(z) = V +
0 e−γ z + V −

0 e+γ z, (F.17)

Is(z) = I+
0 e−γ z + I−

0 e+γ z, (F.18)

where V +
0 and I+

0 are the amplitudes of, respectively, voltage and current waves traveling
in the positive z-direction and V −

0 and I−
0 are the amplitudes of, respectively, voltage and

current waves traveling in the negative z-direction.
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The characteristic impedance, Z0, of the transmission line is defined as the ratio of, in
the positive direction, traveling voltage and current:

Z0 = V +
0

I+
0

. (F.19)

By use of equations (F.11), (F.12), (F.17) and (F.18), we find for the characteristic
impedance

Z0 = V +
0

I+
0

= R + jωL

γ
= γ

G + jωC
, (F.20)

and upon substitution of equation (F.15)

Z0 =
√

R + jωL

G + jωC
. (F.21)

F.2 Guided Waves

We have seen in the previous section that by introducing complex quantities, we may
describe voltage and current at any place on a transmission line as a superposition of
a (voltage or current) wave traveling in the positive direction and one traveling in the
negative direction. We used this concept, in combination with that of distributed transmis-
sion line parameters, to derive expressions for the propagation constant and characteristic
impedance of a transmission line.

In this section we will further explore this guided wave1 property of transmission lines
to derive practical parameters such as voltage standing wave ratio (VSWR), reflection
factor , characteristic impedance and input impedance. These parameters prove to be
very useful in designing microwave networks, as they allow us to design subsystems and
predict the behavior of the interconnected subsystems on the basis of the values of these
parameters.

In order to analyze transmission lines, we will take the general two-wire transmission
line of Figure F.3 and look in detail at the voltage between and the current through the
two wires.

Voltage and current in the long transmission line can propagate as a wave going in
the positive s-direction and as a wave going in the negative s-direction. For the wave
propagating in the positive s-direction

v+(s, t) = � {
V +(s)ejωt

}
, (F.22)

where
V +(s) = Ae−γ s, (F.23)

and
i+(s, t) = � {

I+(s)ejωt
}
, (F.24)

1 Guided waves as opposed to unguided waves which we encounter in a radio link.
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+

−

i±(s, t)

s = 0

v±(s, t)

i±(s, t)

Figure F.3 Voltage and current of a two-wire transmission line.

where
I+(s) = A

Z0
e−γ s, (F.25)

Z0 being the characteristic impedance of the transmission line. A is, for the moment, an
unknown complex amplitude coefficient.

For the wave propagating in the negative s-direction

v−(s, t) = � {
V −(s)ejωt

}
, (F.26)

where
V −(s) = Be+γ s, (F.27)

and
i−(s, t) = � {

I−(s)ejωt
}
, (F.28)

where
I−(s) = − B

Z0
e+γ s . (F.29)

B is, for the moment, an unknown complex amplitude coefficient.
The propagation constant is also in general complex,

γ = α + jβ, (F.30)

where α is the attenuation constant and β is the phase constant. When the transmission
line is lossless, α = 0 and the amplitude of the wave is constant over the transmission
line. In that situation R = G = 0 and equation (F.21) reveals that for that situation the
characteristic impedance is real. Using the sign convention of Figure F.3 makes the
characteristic impedance positive.

The phase constant β is related to the wavelength λ. Whenever s increases by an
amount equal to λ, the same phase must be encountered: βλ = 2π and thus

β = 2π

λ
. (F.31)

β is also known as the wave number .
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F.2.1 VSWR and Reflection Factor

When a traveling wave at some point is totally or partially reflected, a standing wave
is created. The ratio of the absolute values of the complex voltage wave amplitude at
maximum and at minimum is known as the voltage standing wave ratio (VSWR), S.

S = |V |max

|V |min

=
∣∣V +∣∣ + ∣∣V −∣∣
|V +| − |V −| . (F.32)

The reflection factor, ρ, is defined as

ρ = V −

V + = B

A
e2γ s . (F.33)

From equations (F.32) and (F.33) follows

S = 1 + |ρ|
1 − |ρ| , (F.34)

and
|ρ| = S − 1

S + 1
. (F.35)

F.2.2 Impedance and Relative Impedance

The impedance, Z, which is a function of the position s along the transmission line, just
like ρ, is defined as

Z = V

I
= V + + V −

I+ + I− . (F.36)

The relative impedance, z, is the impedance Z normalized to the characteristic
impedance of the transmission line

z = Z

Z0
= 1 + B

A
e2γ s

1 − B
A
e2γ s

. (F.37)

In determining the impedance we suppose the transmission line tp be cut at position s.
The impedance is related to the part of the transmission line to the right of the cut. An
excitation voltage V (s) then results in a current I (s).

Substitution of equation (F.33) into equation (F.37) leads to

z = 1 + ρ

1 − ρ
, (F.38)

and
ρ = z − 1

z + 1
. (F.39)
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F.3 Input Impedance of a Transmission Line

Assume a transmission line of length l, meaning 0 ≤ s ≤ l. We will add a subscript i to
the parameters Z, z, S and ρ when they refer to the input of the transmission line (s = 0).
When they refer to the output of the transmission line (s = l), we will use a subscript u.
For an arbitrary position s (0 < s < l) we will use no subscript.

We now want to express the input impedance, Zi , as function of the load impedance,
Zu, at the end of the transmission line.

By use of equation (F.33) we find

ρi = ρue
−2γ l . (F.40)

Upon substitution of this result into equation (F.38) and using equation (F.39), we find
for the normalized input impedance

zi = 1 + ρue
−2γ l

1 − ρue−2γ l
=

1 + zu−1
zu+1e−2γ l

1 − zu−1
zu+1e−2γ l

. (F.41)

After some straightforward, though lengthy calculations,2 this equation may be rewrit-
ten into

zi = zu cosh(γ l) + sinh(γ l)

zu sinh(γ l) + cosh(γ l)
. (F.42)

For a lossless transmission line, γ = jβ = j 2π
λ

, so that

zi = zu + j tan
(
2π l

λ

)
1 + jzu tan

(
2π l

λ

) . (F.43)

F.4 Terminated Lossless Transmission Line

Using equation (F.43), that relates the normalized input impedance to the normalized load
impedance of a lossless transmission line of length l, we will now look into some special
situations.

F.4.1 Matched Load

A transmission line is terminated into a matched load if the load impedance is the complex
conjugate of the characteristic impedance of the transmission line. Since, by virtue of
equation (F.43), we assume our transmission line to be lossless, we have seen that the
characteristic impedance is real. Therefore, the line is terminated into a matched load if
the load impedance is equal to the characteristic impedance of the transmission line.

2 Start by multiplying numerator and denominator of the equation by 1
2 (zu + 1) eγ l .
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So, we have the situation that Zu = Z0 and therefore zu = 1. This means that every-
where on the transmission line Z = Z0 and ρ = 0 (no reflection). Also, S = 1.

F.4.2 Short Circuit

When we terminate the transmission line into a short circuit, Zu = 0 and therefore also
zu = 0. Substitution of zu = 0 into equation (F.43) gives

zi = j tan

(
2πl

λ

)
. (F.44)

Upon a closer inspection of this equation we see that, going from the short circuit over
the transmission line to the input, we alternately, at intervals of a quarter wavelength,
encounter an impedance that is either purely inductive or purely capacitive, see also
Figure F.4.

A practical application may be found in the creation of capacitors and inductors by
means of pieces of short-circuited transmission line.

F.4.3 Open Circuit

If we leave the transmission line open at the end, Zu = ∞ and thus zu = ∞. Substitution
of zu = ∞ into equation (F.43) gives

zi = −j
1

tan
(

2πl
λ

) . (F.45)

We find an input impedance behavior over the transmission line analogous to the situ-
ation depicted in Figure F.4, but shifted by a quarter of a wavelength.

l/4 l/4 l/4 l/4

zi

0 0 0–j j –j j∞ ∞

Ind. Cap. Ind. Cap. Ind.

Figure F.4 Impedance behavior along a short-circuited transmission line.
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F.4.4 Imaginary Unit Termination

When Zu = jZ0, remembering that Z0 is real, zu = j . Substitution of zu = j into equation
(F.43) gives

zi = j tan

(
2π

l

λ
+ π

4

)
. (F.46)

Again, we find an input impedance behavior similar to the situation as depicted in
Figure F.4, but now shifted over one eight of a wavelength.

F.4.5 Real Termination

If Zu is real, zu = ru. We may distinguish two situations:

F.4.5.1 ru < 1

For this situation
|ρ| = 1 − ru

1 + ru

, (F.47)

and
S = 1

ru

> 1. (F.48)

F.4.5.2 ru > 1

For this situation
|ρ| = ru − 1

ru + 1
, (F.49)

and
S = ru > 1. (F.50)

F.5 Quarter Wavelength Impedance Transformer

We have seen that if the termination of a lossless transmission line – that is, the impedance
connected at the end of the transmission line – is not identical to the characteristic
impedance of that transmission line, reflections will occur.

Not only are these reflections unwanted due to the fact that they prohibit a complete
signal transfer, they are also unwanted since they distort the quality of the signal trans-
ferred. When a mismatch exists not only at the end of the transmission line but also at
the beginning, the generator-side part of the signal power will reach the load (at the end
of the line) after a certain time delay.

To overcome the negative effects of a mismatch an impedance transformer may be
placed in between transmission line or microwave circuit and load to make a reflection-
free transition between transmission line or microwave circuit and load.
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Z1 ZL

Z1 Z1

Zc

Figure F.5 Impedance matching using a quarter wavelength impedance transformer.

Such an impedance transformer may be realized very easily, employing a piece of
transmission line with the right characteristic impedance.

Starting with equation (F.43), we take a piece of transmission line of characteristic
impedance Zc and length equal to a quarter of a wavelength at the frequency of operation.
The load impedance is ZL. The unnormalized input impedance is then found to be

Zin = Zczin = Zc

[
ZL + jZc tan

(
π
2

)
Zc + jZL tan

(
π
2

)
]

= Z2
c

ZL

. (F.51)

So, if we take a piece of transmission line, a quarter of a wavelength long (at the
operating frequency) and dimension this transmission line such that its characteristic
impedance is equal to

Zc =
√

ZinZL, (F.52)

where Zin is the required input impedance (usually the impedance level of the circuit
connected to the load), and place this piece of transmission line between circuit output
and load, we have created a reflectionless transition from circuit to load, see Figure F.5.

The equivalent of the impedance transformer and load impedance ZL is a new load
impedance equal to Zin.



Appendix G

Coplanar Waveguide (CPW)

In a coplanar waveguide (CPW) structure, metalization is present only on top of a dielectric slab.
Impedance is controlled by the separation of metallic traces and not by substrate thickness. This
can be advantageous, especially when making connections at high frequencies.

The cross section of a classic CPW is shown in Figure G.1. By ‘classic’ we mean that
no ground plane is present. CPW structures on a grounded dielectric slab also exist.

The characteristic impedance, Z0, may be calculated as [1]

Z0 = 30π√
εeff

K
(
k′)

K(k)
, (G.1)

where

εeff = 1 + εr − 1

2

K
(
k′)K (k1)

K(k)K
(
k′

1

) , (G.2)

and

k = W

W + 2S
, (G.3)

k1 = sinh
(

πW
4H

)
sinh

(
(W+2S)π

4H

) . (G.4)

In the above, K is the complete elliptic integral of the first kind and k′ =
√(

1 − k2
)
.

The ratio of complete elliptic functions in equation (G.1) may be approximated by [2]

K(k)

K(k′)
≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2π

ln
[
2

√
1+k+ 4√4k√
1+k− 4√4k

]
for 1 ≤ K

K ′ ≤ ∞, 1√
2

≤ k ≤ 1

2π

ln

[
2

√
1+k′+ 4√

4k′√
1+k′− 4√

4k′

] for 0 ≤ K
K ′ ≤ 1, 0 ≤ k ≤ 1√

2

. (G.5)
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Figure G.1 Cross section of a classic Coplanar Waveguide (CPW) structure.
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Impedance transformer, 226–7
Induced EMF method, 97
Inductance, 140
Inductive, 122
Inductor, 137
Infinitesimal dipole, 67
Input impedance, 86, 96, 105, 117,

120–22, 142–3, 147, 149, 177,
203, 222

Inset feed, 175, 179, 182
Integration boundary, 136
Inverted-F antenna, 12, 97
Invisible region, 203
Ionosphere, 37, 179
Isolation, 180
Isotropic radiator, 25–6, 232

Laplace equation, 66
Large loop, 136
Lee de Forest, 7
LHCP, 185, 216–17
Linear array antenna, 189
Linear phased array antenna, 199
Linear polarization, 33, 35
Linearly polarized, 175
Lobes, 19
Long distance communication, 10
Loop, 132
Loop antenna, 9
Loop impedance, 142, 146
Loop resistance, 147
Lorentz-Lamor theorem, 159
Lorentz gauge, 65, 68, 155
Lorentz reciprocity theorem, 75–6
Loss resistance, 139, 147

Loss tangent, 180
Love’s equivalence principle, 159

Magnetic current density, 153
Magnetic field, 63
Magnetic field lines, 6
Magnetic induction, 63
Magnetic sources, 154–5, 159
Magnetic vector potential, 64
Main beam, 18
Main lobe, 18
Manufacturing tolerances, 175
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