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ABSTRACT: Aluminum (Al) is a widely used metal fuel for energetic
applications ranging from space propulsion and exploration, and
materials processing, to power generation for nano- and microdevices
due to its high energy density and earth abundance. Recently, the
ignition and combustion performance of Al particles were found to be
improved by graphene-based additives, such as graphene oxide (GO)
and graphene fluoride (GF), as their reactions provide heat to
accelerate Al oxidation, gas to reduce particle agglomeration, and
fluorine-containing species to remove Al2O3. However, GF is not only
expensive but also hydrophobic with poor mixing compatibility with Al
particles. Herein, we report a multifunctional graphene-based additive
for Al combustion, i.e., perfluoroalkyl-functionalized graphene oxide
(CFGO), which integrates the benefits of GO and GF in one material.
We compared the effects of CFGO to GO and GF on the ignition and combustion properties of nAl particles using
thermogravimetric analysis, differential scanning calorimetry, temperature-jump ignition), Xe flash ignition, and constant-
volume combustion test. These experiments confirm that CFGO generates fluorine-containing species, heat, and gases, which
collectively lower the ignition threshold, augment the energy release rate, and reduce the combustion product agglomeration
of nanosized Al particles, outperforming both GO and GF as additives. This work shows the great potential of using
multifunctionalized graphene as an integrated additive for enhancing the ignition and combustion of metals.
KEYWORDS: energetic materials, aluminum combustion, graphene oxide, graphene fluoride, functionalized grapheme

Aluminum (Al), as a metal fuel, has attracted great
attention in the past decades due to its high energy
density, earth abundance, and low cost as well as its

potential in energetic applications, such as power generation,
propulsion, and space exploration.1−5 However, the use of Al
particles for energetic application faces several challenges. First,
Al particles naturally have a native oxide (Al2O3) layer (2−5
nm),6,7 which slows down the mass transport through the oxide
layer.8,9 Second, Al combustion exhibits a size effect. It is well
recognized that the nanosized Al (nAl) particles have a higher
reactivity and a lower ignition temperature than the micron-
sized Al (μAl) particles.5,10−12 But nAl particles tend to
aggregate, making them burn like the μAl particles.13,14 Finally,
when Al particles burn, regardless of their sizes, Al particles and
their combustion products (Al2O3) sinter and agglomerate,
slowing down the vapor-phase burning of Al and lowering its
combustion efficiency.2,11,15

Incorporation of additives to Al is an effective approach to
address the above-mentioned challenges. Various additives, such

as metals (e.g., nickel, titanium),16−18 metal oxides, (e.g., copper
oxide),19−21 energetic polymers (e.g., metal−organic frame-
work),22−24 fluoropolymers (e.g., polytetrafluoroethylene
(PTFE)),25−27 metal fluorides (e.g., nickel fluoride),28 and
carbon nanomaterials (e.g., functionalized graphene),7,29−31

have been reported to promote the ignition and/or combustion
of Al by providing at least one of the following benefits. First,
some additives release heat through reactions before Al ignition,
leading to stressed Al surface and facilitatingmass transport of Al
and/or O through the native oxide shell.18 Second, some
additives release fluorine-containing species that react with the
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native Al2O3 shell and/or newly formed Al2O3, exposing more
active Al for oxidation and leading to faster and more complete
combustion.32−34 Finally, some additives, such as metal−
organic framework and nitrocellulose, release gaseous products
before Al ignition or during Al combustion, which help to break
up the aggregates of metal particles or condensed-phase
combustion products.35−37

Previously, we have investigated the enhancing effects of
functionalized graphene additives, including graphene oxide
(GO) and graphene fluoride (GF), on the ignition and
combustion performance of μAl particles in the air.7,38 We
found that GO releases heat and gases through a disproportio-
nation reaction at ∼200 °C, which initiates the ignition of μAl
and reduces the agglomeration of the combustion products.38

GF provides fluorocarbon radicals that react with Al2O3 to form
volatile products (AlF3), enhancing the combustion efficiency of

μAl.7 Moreover, the mixture of GO and GF provides heat, gases,
and fluorine-containing species, all of which are desirable for Al
combustion. However, GF is hydrophobic and has poor mixing
compatibility with GO and Al particles, and GF is of high cost
due to its complicated and toxic synthesis approaches.39,40

Herein, we report a multifunctional graphene-based additive
for Al combustion, perfluoroalkyl-functionalized graphene oxide
(CFGO), which integrates the benefits of GO and GF in one
material. We compared the effects of CFGO to GO and GF on
the ignition and combustion properties of nAl particles using
thermogravimetric analysis (TGA), differential scanning calo-
rimetry (DSC), temperature-jump ignition (T-Jump ignition),
time-of-flight mass spectrometry (TOFMS), xenon (Xe) flash
ignition, and the constant-volume combustion test. These
experiments confirm that CFGO generates fluorine-containing
species, heat, and gas that lower the ignition threshold, increase

Figure 1. (a) XPS spectrum of C 1s of CFGO; (b) elemental composition of C, O, and F in GO, GF, and CFGO; scanning electron microscopy
(SEM) images of the (c) pristine nAl; (d) nAl/GO; (e) nAl/GF; (f) nAl/CFGO.
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the energy release rate, and reduce the combustion product
agglomeration of nAl, outperforming both GO and GF as
additives.

RESULTS AND DISCUSSION
Material Characterization of CFGO and nAl/CFGO. The

X-ray photoelectron spectroscopy (XPS) spectrum of CFGO in
Figure 1a shows that its C 1s peak contains both oxygen
(hydroxyl (C−O), carboxylic (O−C�O), and epoxy) and
fluorine (fluorocarbon) functional groups, suggesting the
successful functionalization of GO with fluorocarbon groups.
Further analysis of the XPS data shows that GO has ∼33 atom%
of O and GF has ∼50 atom % of F. For comparison, CFGO has
O and F content of ∼18 and ∼29 atom %, respectively (Figure
1b). Figure 1c−f shows the morphology of the pristine nAl and
nAl/additive (20 wt %) mixtures. The pristine nAl particles are
spherical and aggregated (Figure 1c). The nAl particles are less
aggregated in the presence of GO (Figure 1d). It has been
reported that GO is negatively charged due to the presence of
oxygen functional groups and Al particles are positively charged
in solution,41 so Al particles are attracted to the surface of GO
and trapped between flakes, which reduces the nAl particle
aggregates. In contrast, nAl and GF have opposite hydro-
phobicity. It has been reported that Al usually has a contact angle
below 60°while the contact angle of GF is larger than 135°.42−44

The hydrophilic nAl and hydrophobic GF do not mix well and
agglomerate to themselves (Figure 1e and Figure S2). CFGO,
somewhere in between GO and GF, mixes better with nAl
particles than GF, with smaller Al aggregates distributed around
CFGO (Figure 1f and Figure S2).
Thermochemical Behaviors of nAl/CFGO under Slow

and Fast Heating Conditions. The thermochemical behav-
iors of nAl/CFGO and other control groups (nAl/GO, nAl/GF,
and nAl) under slow heating conditions were then examined by
TGA/DSC. All of the samples were heated from 100 to 700 °C
with a heating rate of 10 °C/min, and the results are summarized
in Figure 2. The heating stops at 700 °C, right after the melting
of Al (660 °C), so that we can focus on the interactions between
nAl and additives when Al is in the solid phase. The initial mass
drop beginning at 100 °C for all of the samples is attributed to
the desorption of water molecules. Around 200−260 °C (Figure
2, region i), only nAl/GO and nAl/CFGO exhibit a mass drop
that corresponds to the disproportionation reaction of GO, for
which some of the sp3 carbon is oxidized to gases (e.g., CO2)
(Figure S1) and others are reduced to sp2 carbon.45 At 400−500
°C (Figure 2, region ii), both nAl/CFGO and nAl/GF samples
exhibit a tiny exothermic peak with a slight mass drop. The
TGA-IR analysis of CFGO reveals that CFx species are produced
in this temperature range (Figure S1), so the exothermic peak is
attributed to the preignition reactions (PIR)32 between
fluorocarbons and the native Al2O3 shell. At 500−650 °C
(Figure 2, region iii), all samples show an apparent exothermic
peak with corresponding mass gains, which is due to the
oxidation of Al. In regions ii and iii, the nAl/GO shows a gradual
mass drop, which is attributed to the oxidization of carbon to
CO2. At 660 °C (Figure 2, region iv), all four samples exhibit a
tiny endothermic peak due to the melting of Al, suggesting that
the Al is not fully oxidized at this temperature. The TGA/DSC
results show that nAl/CFGO has both the disproportionation
reaction of GO and preignition reaction between nAl and GF.
To further understand the impact of CFGO on the ignition of

nAl, the ignition temperatures of these four samples (nAl, nAl/
GO, nAl/GF, and nAl/CFGO) were investigated by a T-jump

experiment in air. As shown in Figure 3a, pristine nAl particles
cannot be ignited by the Pt wire and only sinter slightly. The
three nAl samples with additives can be ignited, and the ignition
temperature is ∼960 °C for nAl/GO and slightly below 600 °C
for both nAl/GF and nAl/CFGO, which implies that F is
effective in reducing the ignition threshold of nAl particles
through PIR. The insets in Figure 3a also show that nAl/GF and
nAl/CFGO burn more vigorously than nAl/GO. Next, the T-
jump experiments coupled with mass spectroscopy (MS) were
conducted in a vacuum to focus on reactions of the
functionalized graphene additives and their interactions with
nAl (Figure 3b−d) upon rapid heating. The nAl/GO sample
produces CO2 from the disproportionation reaction of GO
(Figure 3b). The nAl/GF sample produces AlF from the
preignition reaction between fluorocarbons and the oxide on the
nAl surface. Moreover, nAl/CFGO produces both CO2 and AlF.
The above results from TGA/DSC, T-jump, and MS indicate

that CFGO exhibits characteristics of both GO and GF by
releasing heat and gases (mainly CO2) and fluorine-containing
species for preignition reaction. Both features facilitate the
ignition of nAl. These findings motivate us to further evaluate
the effect of CFGO on the combustion of nAl particles.
Combustion of nAl/CFGO Composite Powders under

Fast Heating Conditions. The combustion performance of
these four samples (nAl/CFGO, nAl/GO, nAl/GF, and nAl)
was studied in a constant volume vessel, and their reaction was
triggered optically by Xe flash. The minimum flash ignition
energy was determined by gradually increasing the power of the
Xe flash until the sample was ignited.46,47 The pressure history

Figure 2. Investigation of the thermochemical behaviors of nAl with
functionalized graphene additives at a slow heating rate (10 °C/
min) in air. DSC (red curves, left y-axis) and TGA (black curves,
right y-axis) of pristine nAl, nAl/GO, nAl/GF, and nAl/CFGO
composite powders.
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was recorded by a pressure transducer. Figure 4a shows images
captured by a high-speed camera and a high-speed infrared (IR)
camera. The time-resolved temperature evolution is also
extracted from the IR camera videos and plotted in Figure S3.
As shown in Figure 4a and Figure S3, nAl/CFGO exhibits the
most violent burning and the highest combustion temperature.
For nAl/CFGO, the supplementary video shows that burning
particles are ejected with smoke generation. Some burning
particles exhibit a microexplosion phenomenon (Figure S4),
which was observed previously with laser-ignited Al particles.18

The minimum ignition energy increases in the order of nAl/GF,
nAl/CFGO, nAl/GO, and nAl (Figure 4b), implying that the F
plays the dominant role in reducing the ignition threshold of nAl
while the peak pressure decreases in the order of nAl/CFGO,
nAl/GO, nAl/GF, and nAl (Figure 4b). Together, nAl/CFGO
exhibits relatively low ignition energy and the highest and fastest
pressure rise among all the samples (Figure 4b). With 20 wt % of
CFGO, the peak pressure and pressurization rate of flash-ignited
nAl particles are increased by over 7- and 6-fold compared to
pristine Al particles, respectively. Moreover, we found that the
addition of CFGO is more effective than the mixture of GO and
GF (Figure S5).
On a separate note, the degree of functionalization of CFGO

is tunable, and the synthesis and combustion performance of
CFGO with lower and higher degrees of functionalization are
shown in the Supporting Information (Figure S6). Based on the
oxygen and fluorine contents of all of the functionalized
graphene additives investigated (GO, GF, and CFGO with
different degrees of functionalization), we also plotted the
relationships between the energetic performance and O and F
contents as shown in Figure S7. Although there is only a small set

of data points, we hope it can serve as a preliminary reference for
the design of compositions of multifunctionalized graphene
additives for metal combustion. We anticipate more efforts with
computational approaches can be done in the future.
The combustion products from the combustion tests (Figure

4a) were evaluated by SEM (Figure 4c−f) and X-ray diffraction
(XRD) (Figure 4g). Pristine nAl particles mainly sinter with
limited oxidation (Figure 4g), as the morphology of their
combustion products (Figure 4c) is similar to that of the pristine
nAl before ignition (Figure 1c). The products of nAl/GO
contain porous Al2O3 nanoparticles, which are even smaller than
the unreacted nAl particles (Figure 4d), suggesting a large
amount of gas generation due to the existence of GO. The
products of nAl/GF have relatively larger particles with highly
crystallized facets (Figure 4e). These particles contain both
Al2O3 and AlF3 (Figure 4g) and are sintered together while
maintaining a porous structure. It should be noted that both
nAl/GO and nAl/GF have a relatively low extent of Al oxidation
as the XRD of products reveals the dominant existence of
metallic Al (Figure 4g). Finally, combustion products of nAl/
CFGO (Figure 4f) consist of both partially sintered crystallized
particles, similar to that of nAl/GF, and smaller and porous
nanoparticles, similar to that of nAl/GO. Interestingly, the
products of nAl/CFGO also contain nanowires, as circled in
Figure 4f. Those Al and/or Al2O3 nanowires are likely formed
due to the thermal stress accumulation of Al particles confined
by graphene nanosheets at high temperatures, according to
previous literature.48 Besides, the nAl/CFGO products also
exhibit relatively higher intensities for α-Al2O3 and γ-Al2O3
(Figure 4g), which suggests a higher extent of oxidation. AlF3 is
also detected in the nAl/CFGO products (Figure 4g),

Figure 3. Characterization of the ignition temperature and species emission in T-jump ignition experiments: (a) ignition temperature of pristine
nAl, nAl/GO, nAl/GF, and nAl/CFGOdetermined by T-jump ignition in 1 atm air. The inserted snapshots represent the largest footprint of the
burning of each sample during the T-jump experiment. Time-resolved CO2 and AlF emission of (b) nAl/GO; (c) nAl/GF; and (d) nAl/CFGO
measured by T-jump experiment with mass spectroscopy in a vacuum.
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confirming the involvement of F during the nAl/CFGO
combustion.

All of the aforementioned experimental results are summar-
ized in a spiderweb plot in Figure 5a. nAl/CFGO stands out

Figure 4. (a) Investigation of the burning behaviors and combustion temperature of pristine nAl, nAl/GO, nAl/GF, and nAl/CFGO. All of the
samples were ignited by Xe flash (power: 2.1 J/cm2, heating rate: 105−106 °C/s) in the air. Snapshots were obtained from videos taken by a high-
speed camera (black and white) and high-speed IR camera (colorful). (b) Time-resolved pressure evolution of pristine nAl, nAl/GO, nAl/GF,
and nAl/CFGO in a constant-volume vessel. All of the samples were ignited by Xe flash (power: 2.1 J/cm2, heating rate: 105−106 °C/s) in the
air. The minimum flash ignition energy (Emin) of each sample is shown in the legend. (c−g) Combustion products analysis. SEM images of the
combustion products of (c) pristine nAl; (d) nAl/GO; (e) nAl/GF; (f) nAl/CFGO; and (g) XRD spectra of the combustion products.

Figure 5. (a) Summary of the energetic performance of nAl with various functionalized graphene additives (Tign: ignition temperature in T-
jump; Emin: the minimum ignition energy of flash ignition; Tmax: the maximum combustion temperature achieved during the burning of flash-
ignited samples in the air; Ppeak: the maximum pressure rises of the flash-ignited samples in a constant-volume vessel; dP/dt: the pressurization
rate of the flash-ignited samples). (b) Schematic summary of this work, showing the molecular structure of different additives, their effects on
nAl combustion, and the burning phenomena of nAl with functionalized graphene additives.
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among all the samples for its lower ignition threshold and higher
combustion temperature and pressure generation. As schemati-
cally summarized in Figure 5b, CFGO is GO functionalized with
fluorocarbon chains while maintaining some of the oxygen
functional groups of GO. By combining oxygen and fluorine
functional groups, CFGO could break up the nAl aggregates
before combustion, provide heat and fluorine-containing
radicals to facilitate the ignition and combustion, and release
gaseous products to reduce the agglomeration of combustion
products, which collectively lower the ignition threshold and
augment the energy release rate of nAl, leading to superior
ignition and combustion performance of nAl/CFGO to pristine
nAl, nAl/GO, and nAl/GF. All these confirm that CFGO is an
effective multifunctional additive for Al combustion.

CONCLUSIONS
We have demonstrated the use of CFGO as a multifunctional
additive to promote the ignition and combustion of Al particles
in the air. By comparing the thermochemical behaviors, ignition,
and combustion performance of nAl with the addition of GO,
GF, and CFGO, we found that CFGO exhibits the beneficial
properties of both GO and GF. The presence of fluorine
functional groups in CFGO induces the PIR that removes Al2O3.
The oxygen functional groups in CFGO improve mixing with
nAl particles and provide heat and gas, which accelerate
oxidation and reduce the agglomeration of condensed-phase
combustion products. Our work illustrates the potential of
multifunctionalized graphene materials as effective additives for
metal combustion and will inspire efforts to incorporate more
functionalities into this graphene-based system to realize one
integrated additive for metal fuels and energetic materials.

METHODS
Materials Preparation. CFGO with both oxygen and fluorine

functional groups was synthesized by functionalizing GO (0.5−5 μm in
diameter, 0.8−1.2 nm in thickness, XFNANO) with 1H,1H,2H,2H-
perfluorooctyltriethoxysilane (C14H19F13O3Si, 98%, Sigma-Aldrich).
The degree of fluorocarbon functionalization can be tuned by varying
the synthesis conditions, the details of which can be found in the
Supporting Information. Specifically, for the CFGO investigated in this
work, 20 mg of GOwas dispersed in 20 mL of ethanol and sonicated for
1 h. Then, 0.05 mL of 1H,1H,2H,2H-perfluorooctyltriethoxysilane was
added dropwise into the GO solution, and the suspension was
vigorously stirred for 24 h at 65 °C. Afterward, the CFGOwas collected
four times by centrifuge, and the residual unbound perfluoroalkyl
molecules were removed by washing with ethanol after each centrifuge.
The collected CFGO powders were dried in a vacuum desiccator for 12
h. To prepare the nAl/CFGO (80/20 wt %) composite powders, 20 mg
of CFGOwas redispersed in 10mL of ethanol/deionized water mixture
(80/20 v/v) and sonicated for 2 h. Meanwhile, 80 mg of nAl particles
(nominal diameter of 70 nm, US Nano, ∼72.5 wt % of active content)
were dispersed in 10 mL of ethanol and sonicated for 30 min. Then the
two suspensions were mixed and sonicated for 1 h. The mixture
powders were collected by filtration and dried in a vacuum desiccator
for 12 h. The same method was also used to prepare nAl (80 wt %)
mixtures with GO and GF (0.4−5 μm in diameter, 0.8 nm in thickness,
XFNANO).
Materials Characterization. The morphologies and elemental

compositions of the pristine nAl powders and the nAl/CFGO, nAl/GO,
and nAl/GF powders and their combustion products were charac-
terized by SEM (FEI Magellan 400) with energy-dispersive X-ray
spectroscopy (EDXS). The bonding and chemical composition of the
CFGO were investigated via XPS (PHI VersaProbe) with the CasaXPS
software. The phases and compositions of the solid combustion
products were characterized by XRD (PANalytical Empyrean).

TGA/DSC and TGA-IR Measurements. The thermochemical
behaviors of the nAl powders with and without additives were
investigated by simultaneous TGA/DSC (Setaram Labsys Evo). For
each measurement, 5 mg of the sample powders was placed in a 100 μL
alumina crucible and then heated at a rate of 10 °C/min from 100 to
700 °C in an airflow (40 sccm). After being cooled to room
temperature, the sample was reheated with the same setting, and the
reheating curve was used to correct the baseline of the first heating
process. The gaseous products from CFGO, GO, and GF heated in the
air were also analyzed via the TGA-IR mode of Fourier-transform
infrared spectroscopy (Nicolet iS50 FTIR Spectrometer, Thermo-
Fisher).
T-Jump/TOFMS Experiments. Ignition properties of the nAl

powders with and without additives were analyzed with T-Jump
ignition, a technique described in detail in previous work.49 The
ignition tests were conducted under 1 atm of air. For a typical
measurement, the sample powder was dispersed in hexane and
sonicated for 30 min and then coated onto a Pt wire (76 μm in
diameter). The sample-coated Pt wire was inserted into a chamber filled
with air and rapidly Joule-heated to ∼1000 °C by a 3 ms pulse at a
heating rate of ∼105 K/s. The temporal voltage and current of the wire
were recorded during heating, and the instantaneous temperature was
calculated based on the Callendar-Van Dusen equation. The ignition
event on the Pt wire was recorded by a Vision Research Phantom v12.0
high-speed camera. The ignition temperature was estimated by
correlating the video and the measured wire temperature based on
triple tests, and the average value with standard deviation is reported.
The transient gaseous species during the ignition and combustion
events were detected by conducting T-jump/TOFMS. The details
about T-Jump/TOFMS can be found in our previous studies.50,51

Flash Ignition and Time-Resolved Pressure Measurement.
The ignition and combustion of the nAl/additive samples were
investigated by measuring their temperature and pressure rises upon Xe
flash ignition at a heating rate of ∼105−106 °C/s. The experimental
details have been reported in our previous works.7,38 For a typical flash
ignition experiment, 5 mg of sample powders was placed on a 1 mm
thick glass slide on top of a commercial Xe flash ring tube (AlienBees
B1600). To minimize the effect of porosity, all sample powders were
packed to have a porosity of ∼85% in these experiments. The burning
process of flash-ignited samples was recorded by a high-speed camera
(Photron FASTCAM SA5) at 5000 fps and a high-speed IR camera
(FLIR X6900sc) at 1000 fps. For the time-resolved pressure
measurement under constant-volume conditions, 20 mg of powders
was loaded in a 20 mL glass vial with air, and the vial was then placed on
top of the Xe flash ring tube and then ignited at a power of 2.1 J/cm2.
The pressure generation from nAl combustion was recorded by a
pressure transducer (603B1, Kistler, Inc.). The temperature of the
burning particles was measured by the IR camera at 1000 fps, and we
used the maximum temperature in each frame to plot the temperature
vs time profiles. For each sample, the temperature measurement was
repeated three times to obtain the error bars. The maximum
temperature throughout the entire period was defined as Tmax.
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Burning process of nAl/CFGO sample triggered by Xe
flash ignition in air (MP4)
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