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Abstract

In previous studies of particle growth, we have synthesized binary metal oxide aerosols and have
observed the evolution of internal phase segregation during growth of molten nanodroplets. We describe
a new formulation of the aerosol general dynamic equation (GDE) that incorporates phase segregation in
a binary aerosol. The model assumes that complete phase segregation is the thermodynamically favored
state, that no thermodynamic activation energy exists, and that the segregation process is kinetically con-
trolled. We develop a GDE formulation that involves the solution of a distribution function Nn(V ), where
Nn(V ) is the number density of aerosols with volume V and n phase domains (which we might think of
as enclosures). The GDE is solved using a two-dimensional sectional model, under the assumption that
the phase coalescence of the minority phase is controlled by Brownian coagulation. For the purposes
of these initial studies, the rate laws governing the enclosures (minority phase) assume a monodisperse
particle size distribution. The dynamical behavior of such a system is presented. c© 2001 Elsevier Science
Ltd. All rights reserved.
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1. Introduction

The evolution of an aerosol population is described by a master equation, the “aerosol general
dynamic equation” (GDE). The GDE has been employed to characterize the behavior in time
and space of the particle size distribution function, which can include all the driving forces for
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Fig. 1. Aerosol droplet with enclosures. The droplets on the left are “younger”.

particle growth (nucleation, surface growth, coagulation=coalescence, transport) (Friedlander,
2000).

However, in these multi-component studies it is assumed that the components comprising the
particles are homogeneously distributed within the particle. We have been involved in a number
of multi-component aerosol dynamics studies in which the internal structure of the components
within the aerosol particle are at the heart of our interest in the materials, their properties
and function. For example, we have conducted studies on the formation of binary metal oxide
systems with application to removal of heavy metals (Biswas & Zachariah, 1997; Biswas, Yang,
& Zachariah, 1998) as well as the formation of materials with novel and interesting properties
(Ehrman, Friedlander, & Zachariah, 1998, 1999; Ehrman, Aquino-Class, & Zachariah, 1999).

In this study, we focus on one particular binary system (SiO2/Fe2O3) which we have studied in
considerable detail. For this iron oxide=silica system, our initial goal was to develop a method
for producing a ferromagnetic cluster within a non-magnetic host, and the iron oxide=silica
system was chosen because the phase behavior at very high temperatures, that is when both
components are in the liquid state, indicated that the liquids would be immiscible.

Our initial success in producing these materials (Zachariah, Aquino-Class, Shull, & Steel,
1995) indicated that further research into the mechanistic aspects of the growth was war-
ranted. In subsequent studies, we employed both in situ interrogation into the formation process
(McMillin, Biswas, & Zachariah, 1996), multi-component aerosol dynamic modeling (Biswas,
Wu, Zachariah, & McMillen, 1997), and molecular dynamics computation (Zachariah, Shull,
McMillin, & Biswas, 1996). One of the primary conclusions from these works was that at these
high temperatures, where the nanodroplets are in a liquid like state, the phase segregation taking
place within the nanodroplet was probably driven by a kinetically limited transport within the
nanodroplet. Fig. 1 shows TEM images of these nanocomposites at two diIerent growth times.
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Fig. 2. Schematic representation of the temporal evolution of a two component aerosol.

The images make clear the existence of dark (Fe2O3) and light (SiO2) domains, in which with
increasing time we see the growth of the iron oxide phase. One can imagine that the temporal
evolution of the aerosol phase follows the general characteristics illustrated in Fig. 2.

Our goal in this paper is to develop a new formulation of the GDE which characterizes both
aerosol growth, and the evolution of the internal morphology of multi-component liquid aerosols
in which the phases are immiscible.

Formulation of the GDE for the problem presented is a variant in the formulation of other
2-D GDEs that have been used to track both composition and shape. In (Koch, & Friedlander,
1990) a multi-component formulation treats the changes in composition of particles, but assumes
each aerosol particle to be homogeneous. Other approaches treat the evolution in shape due to
Knite coalescence events (Koch, & Friedlander, 1990; Xiong & Pratsinis, 1993). In the present
formulation we assume instantaneous coalescence with a multi-component formulation which
assume that the particle interior is inhomogeneous.

The model developed in this paper must be considered as the Krst step towards a more
detailed theory which—hopefully—will be able to describe experimental observations. In its
present state, the model relies on many assumptions, however, the experiments themselves are
of a suNciently qualitative nature that quantitative comparison is unwarranted. Rather we hope
to develop the model and explain the qualitative behavior observed and conclude some generic
results associated with processes of this type.

2. The model

Due to surface tension, the iron oxide phase forms sphere-like enclosures inside the aerosol
droplets. Obviously, it is not possible to describe the individual enclosures inside individual
droplets since the numerical eIorts would be tremendous. Therefore, we supplement the usual
statistical formulation for the droplets, as given by the GDE, with terms which account for the
statistics of the iron oxide enclosures.

The enclosures are considered as particles inside the molten droplet, where coagulation takes
place due to the Brownian motion of the enclosures. In this Krst approach to the problem, we
only account for the expected number of enclosures inside the droplets. Thus, we ignore most
details of the physics inside the droplet. In particular, we do not account for the size distribution
of the enclosures.
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Furthermore, to make the initial development of the model more tractable, we assume that the
characteristic time for nucleation is considerably shorter than the subsequent growth processes.
Implicit is that both components do not have signiKcantly diIerent nucleation rates. These latter
points are quite reasonable based on our prior in situ and modeling studies (see references
above). Under such conditions, we assume that we have no gas–solid material transfer, so that
the only physical=chemical processes occurring are inter- and intra-aerosol transfer processes.
Finally, we also assume that the solubility of either component in the other is so small that en-
closures cannot loose material by dissolution processes. Under this assumptions we can consider
the coagulation of existing particles without further reference to nucleation and condensation
phenomena.

We consider aerosol droplets which consists of two immiscible components in a constant
volume ratio, c. Our objective is the determination of the distribution of droplet volumes in
time and the internal state of the droplet, that is, the number and size of enclosures in the
droplets.

For this Krst paper, we restrict ourselves to the simplest case and ask for the number density
Nn(t; V ) dV of droplets with volumes in (V; V + dV ) and n enclosures at time t. In particular,
we ignore the size distribution of enclosures, which therefore in a droplet of volume V with n
enclosures have the volume cV=n. For simplicity, we shall write Nn(t; V ) as the number density
distribution as a function of time.

The number density of particles with volume V and any number of enclosures is given by

N(t; V )=
∞∑
n=1

Nn(t; V ): (1)

The theory for this quantity is well developed, and one Knds an evolution equation for N, the
Smoluchowski equation, which reads (Friedlander, 2000)

dN(t; V )
dt

=
1
2

∫ V

0
	(U;V −U )N(t; U )N(t; V −U ) dU

−N(t; V )
∫ ∞

0
	(V;U )N(t; U ) dU: (2)

Here, 	(V;U ) is the collision probability for droplets with the volumes V and U: Assuming
that no friction forces are exerted on the particles during their Pight and that their velocities are
distributed according to the Maxwell distribution, one Knds 	 as (Park, Lee, Otto, & Fissan,
1999)

	(V;U )=
(

3
4�

)1=6(6kT
%

)1=2( 1
V

+
1
U

)1=2
(V 1=3 +U 1=3)2;

where k denotes Boltzmann’s constant, T is the temperature and % is the mass density of the
droplets. The Krst term in the right-hand side of Eq. (2) accounts for the gain of particles with
volume V due to agglomeration of particles with volumes U and V − U , while the second
accounts for the loss due to agglomeration of droplets with volume V and droplets with any
other volume.
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We shall now construct the corresponding equation for Nn(t; V ). Under the natural assumption
that the collision probability 	(V;U ) does not depend on the number of enclosures, we have
(time dependence suppressed in the notation)

dNn(V )
dt

=
1
2

∫ V

0
	(U;V −U )

n−1∑
m=1

Nm(U )Nn−m(V −U ) dU

−Nn(V )
∫ ∞

0
	(V;U )

∞∑
m=1

Nm(U ) dU

+
∞∑

m=n+1

�m→n(V )Nm(V )−
n−1∑
m=1

�n→m(V )Nn(V ): (3)

Here, again, the Krst two terms account for the gain and loss due to the agglomeration of
droplets, while the last two terms refer to the gain and loss due to the coagulation of enclosures
inside a droplet of volume V . The quantity �n→m(V ) dt denotes the probability that in a droplet
of volume V the number of enclosures will change from n to m during the time dt; this quantity
will be considered in the next section.

The coagulation equation (3) has two conservative properties:

1. The coagulation of enclosures does not change the total number N(t; V ) as deKned in
Eq. (1), so that the summation of Eq. (3) over all n gives the proper equation (2) for
N(t; V ). The simple proof relies on the fact that one can invert the sequence of summation as

∞∑
n=1

n−1∑
m=1

=
∞∑
m=1

∞∑
n=m+1

:

2. The total volume density

vtot(t)=
∑
n

∫
VNn(t; V ) dV =

∫
VN(t; V ) dV (4)

is constant in time, that is, vtot(t)= vtot(0)= constant: This is readily shown by multiplication
of (2) with the volume V and subsequent integration.

3. Collision probability for enclosures

3.1. Mean time for agglomeration

By deKnition, 1=�n→m(V ) is the mean time for the change of the number of enclosures from
n to m in a droplet of size V. For the calculation of this time, we assume that Brownian motion
of the enclosures is the dominant physical process inside the droplet. Other possible growth
mechanisms, such as Oswald ripening, are considered to play no important role. Moreover, in
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our simple model we do not account for the diIerent volumes of the enclosures which are
assumed to be spherical.

The theory of the coagulation of spherical particles of the same size provides a diIerential
equation for their number density �= n=V which reads (Fuchs, 1989)

d�
dt

=− K0�2 with K0 =�
kT
�
; (5)

where � denotes the viscosity of the surrounding medium (the silica in our case) and � is a
number that for the case of rigid particles moving in a gas (Fuchs, 1989) has the value �= 4

3.
In our case, however, the deformable enclosures move in a liquid. Moreover, Eq. (5) does not
consider the Knite size of the droplet and requires that the mean distance between enclosures
is considerably smaller than the radius of the droplet. We assume that all aberrations from
the ideal conditions for the validity of Eq. (5) can be absorbed into the number, �. Thus, we
have to consider � as a quantity to be determined by experiments. Nevertheless, due to lack of
experimental data, we shall set �= 4

3. As long as � can be considered as a constant, its actual
value is only of minor importance. A change in � will not change our results qualitatively.
A more detailed theory might yield a dependence of �—and therefore of K0—on dropletsize
V and enclosure number density �, which would change the subsequent argumentation. Future
research will give more insight into these matters.

The right-hand side of Eq. (5) denotes the rate of change of the number density. The proba-
bility to Knd two particles at the same place is proportional to the square of the number density,
and thus the rate of change must be proportional to �2. Moreover, the increase of the tempera-
ture increases the movement of the particles due to Brownian motion while a higher viscosity
acts against any movement. This explains the factor kT=� in the rate of change.

Eq. (5) can be integrated easily and the solution reads after introducing the particle number
�= n=V

n=
n0

1 + (K0=V )n0t
;

where n0 is the number of enclosures at time t=0. It follows that the inverse mean time for
the agglomeration of m enclosures to n enclosures in a droplet of volume V, that is, the desired
quantity �, is given by

1
tm→n

= �m→n(V )=
K0

V
nm
m− n

: (6)

Thus, the probability of agglomeration increases with increasing K0 (increasing temperature,
decreasing viscosity) and decreases with increasing volume V (increasing mean distance between
particles). Moreover, large changes in the number of enclosures are less probable. Note that �
is only needed in Eq. (3) for n �=m, so that it is always Knite.
It is remarkable that �m→n(V ) depends only on the number of enclosures n, but not on their

volume cV=n. Indeed, the concentration c will not appear in the sequel. This is due to the simple
model for the coagulation of the enclosures and will change if a more realistic model is used.
A very simple way to bring the concentration into play is discussed briePy in Appendix A.
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3.2. Coagulation of enclosures alone

In order to get a glance on the behavior of the enclosures, we consider collision-free droplets
of volume V =V0. In Eq. (3), we set Nn(V )=Nn�(V −V0) and 	=0 (where �(V ) is the Dirac
delta function) and obtain with Eq. (6)

dNn
dt

=
∞∑

m=n+1

K0

V0

nm
m− n

Nm −
n−1∑
m=1

K0

V0

nm
n−m

Nn: (7)

In actual numerical calculations, we have to restrict the maximum number of enclosures to some
Knite value, nmax. For convenience, we introduce the dimensionless time t̂= tK0=V0 so that the
equation for coagulation of enclosures can be written as

dNn
dt̂

=
nmax∑
m=1

AnmNm; n=1; 2; : : : ; nmax: (8)

The matrix Anm is given by

Anm=




nm
m−n ; m¿n;

−
n−1∑
k=1

kn
n−k ; m= n;

0; m¡n:

(9)

It should be noted that the variable Nnmax will always decrease with a characteristic time given
by 1=!nmax where !n=

∑n−1
k=1 kn=(n − k); while the number N1 will always grow since !1 =0.

Due to the conservation of the number density, we have for nmax¿m that

nmax∑
n=1

Anm=
m∑
n=1

Anm=0: (10)

In principle, the set (8) of coupled ODEs can be solved by transformation to the principal axes.
In practice, however, the large number of equations makes the transformation impossible, and
we shall rely on numerical solutions.

The eigenvalues of A determine the characteristic time scales of the equations, and, due to
the simple structure of the matrix, it is easy to state that these are given by the quantities !n,
that is, the rate of decrease of the number densities Nn. Obviously, the characteristic time scales
cover a wide range of values: the number of droplets with a large number of enclosures will
decrease much faster than the number of droplets with few enclosures.

This behavior allows for an adaptation of the time step during the numerical calculation. The
initial time step �t̂ is deKned by the fastest scale

�t̂= a=!nmax ;
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where a¡ 1 is an appropriate constant; for our calculations we chose a=0:02. The number
Nnmax will decrease and after several time steps its value will fall below a threshold �, that is

Nnmax ¡� TN with TN =
Ntot

nmax
; Ntot =

nmax∑
n=1

Nn (11)

here we chose �=0:05. If this condition is met, the number density Nnmax will not contribute
signiKcantly to the future process and will be ignored, that is, the corresponding equation will
be canceled. Thus, there is not much change during the corresponding time scale 1=!nmax ; while
the relevant time scale is now given by �t̂1 = a=!nmax−1. The calculation proceeds until Nnmax−1
falls below the threshold, Nnmax−1¡� TN . Then, again, the equation for Nnmax−1 is ignored, and
the new time scale is given by �t̂2 = a=!nmax−2.
This procedure is carried on until N2¡� TN , which corresponds to the stationary state, where

all droplets have only one enclosure, N1 =Ntot. With this scheme, the number density of droplets
with n enclosures (n¿ 2) is not equal to zero in the stationary state, but given by N stat

n �
� TN; n¿ 2 and N stat

1 = (1−�)Ntot. Thus, � is directly related to the error that is introduced by
the method.

Fig. 3 shows the temporal development of Nn=Ntot for the normalized initial condition Nnmax

(�=0)=1, Nn(�=0)=0 (n¡nmax) with nmax =2000. The pictures were taken in intervals
of 1200 time steps. Note that the actual time between the pictures almost quadruples, due to
the increase of the time step. With the data given, we Knd for the stationary values of the
number densities N stat

n � 2:5 × 10−5—this value cannot be resolved on the chosen scale. A
further reduction of the threshold � does not change the results signiKcantly but will increase
the computing time considerably.

3.3. An estimate for the maximum number of enclosures nmax

The question of what number nmax we have to choose is closely related to the time scales
of the process. For the following, we shall assume that the relevant time scale is given by the
mean free time of the droplets. The mean free time is deKned as the average time a droplet
travels before collision. With the mean volume TV =(4�=3) Tr3 of the droplets and a total number
density Ntot; the mean free time of the droplets can be approximated as

�D =
1

	( TV ; TV )Ntot
:

As an example, we consider an aerosol with Tr=50 × 10−9 m and Ntot = 1018 m−3. We obtain
for silica (% � 2000 kg m−3) at T =2300 K that

�D � 8:10× 10−5 s:

We assume that processes on faster scales cannot be measured or are not of interest, respectively.
Thus, only those characteristic times �n are important for the simulation of the enclosures which
are of the same order of magnitude or larger, that is

�n=
V
K0

1
!n
¿ �D; n=2; 3; : : : :
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Fig. 3. Distribution of droplets with n enclosures for various times. nmax =2000; droplet number normalized such
that initial conditions Nnmax (0)=1; Nn(0)=0:

The fastest scale is given by the characteristic time �nmax and thus nmax follows as the solution of

�nmax = �D:

Fig. 4 shows the characteristic times �n computed for silica at T =2300 K (� � 53776:3 kg ms−1)
as well as the mean free time �D. The intersection of the curves gives the number nmax � 1110;
and we conclude that we can ignore droplets with more than 1110 enclosures on the time scale
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Fig. 4. Characteristic times �n and �D for silica droplet of radius 50 nm at T =2300 K (in seconds). The intersection
of the curves deKnes nmax � 1110.

in question. Of course, this number changes with temperature and droplet radius, and must be
considered as a rough estimate.

The number of variables is by far too large for numerical computations and must be reduced.

4. Reduction of variables

4.1. Number of enclosures

In the present problem of coagulation, we have to consider the variables Nn(V ). A numerical
solution requires discrete values VA for the volumes, and the number of variables NA

n might
be extremely large, even if the maximum number of enclosures were small. Therefore, it is
essential to reduce the number of variables.

To this objective it is reasonable to subsume droplets with adjacent numbers of enclosures
into classes. These classes must not be of the same size. Indeed, it makes a big diIerence,
whether a droplet contains 10 or 20 enclosures, while nobody would diIerentiate between two
droplets with 10,000 and 10,010 enclosures. We shall use classes which contain an increasing
number of enclosures.

We indicate the classes by Greek indices, !=1; 2; : : : ; !max; and denote the number of members
in class ! by "!. Moreover, we deKne the boundaries of the classes by

M!=
!∑

$=1

"$ for !=1; 2; : : : ; !max; with M0 =0:

There are no limitations for the choice of the class widths, "!. It turns out, however, that
the doubling of the number of members of successive classes allows for simpliKcations of the
subsequent calculations, and thus we set

"!=2!−2 for !=2; : : : ; !max so that M!=2!−1 for !=1; : : : ; !max: (12)



H. Struchtrup et al. / Aerosol Science 32 (2001) 1479–1504 1489

Obviously, we must have M!max = nmax and with the maximal number of enclosures given by
nmax � 1100, we have !max =11.

With these deKnitions, we have for the number densities of droplets in class !

�!(V )=
M!∑

n=M!−1+1

Nn(V ) for !=1; 2; : : : ; !max:

Correspondingly, if the number density lies in class ! it will be replaced by the mean number
density, that is

Nn(V )=
�!(V )
"a

; n∈{M!−1 + 1; : : : ; M!}: (13)

The evolution equation for �!(V ) follows from summation of Eq. (3), and after some rearrange-
ments we obtain

d�!(V )
dt

= I!−1; !−1(V ) +
!−1∑
$=1

(1−B!$)[I!$(V ) + I$!(V )]

+
!−2∑
$=1

B!−1;$[I!−1;$(V ) + I$;!−1(V )]

−
!max∑
$=1

�!(V )
∫ ∞

0
	(V;U )�$(U ) dU + K0

!max∑
$=1

A!$
�$(V )
V

; (14)

where we have abbreviated

I!$(V )=
1
2

∫ V

0
	(U;V −U )�!(U )�$(V −U ) dU with I00(V )=0: (15)

The matrix A!$ is given by sums of elements of the matrix Anm,

A!$=




1
"$

M!∑
n=1+M!−1

M$∑
m=1+M$−1

nm
m− n

; $¿!;

− 1
"!

M!∑
n=1+M!−1

M!−1∑
m=1

nm
n−m; $= !;

0; $¡!;

(16)

where !!=1="!
∑M!

n=1+M!−1

∑M!−1

m=1 nm=(n−m) is the decay time for the class !. Due to the large
numbers involved, the elements of A!$ for large values, that is, !; $& 10, should be computed
by numerical integration rather than summation. The conservation of droplet number for



1490 H. Struchtrup et al. / Aerosol Science 32 (2001) 1479–1504

non-colliding droplets follows from
!max∑
!=1

A!$=
$∑
!=1

A!$=0 (17)

for !max¿$; and, of course, this must be guaranteed also by numerical approximations to A!$.
The coeNcients B!$ are given by

B!$=




1
"!
; $=1;

3"$+1
2"!

; $¿ 2:
(18)

The relevant calculations, in particular the determination of A!$ and B!$, are outlined in
Appendices B and C.

It is instructive to interpret the various contributions to the right-hand side of Eq. (14). The
Krst two lines refer to the gain of droplets of volume V in class !. The terms I!$(V ) refer to
collisions of two droplets with number of enclosures in classes ! and $ that produce a droplet
of type (V; !). Note that due to the speciKc choice of the class width (12) a droplet in ! will
result only if one of the original droplets is in class ! or (!− 1), respectively.
The next terms refer to the loss of droplets (V; !) due to collisions with any other type of

droplets, and to the gain and loss due to agglomeration of enclosures—the oI-diagonal elements
of A!$ refer to the gain and the diagonal terms to the loss.
Of course, the total number density of droplets with volume V is given by

N(V )=
!max∑
!=1

�a(V ):

The summation of Eq. (14) over all classes should give the coagulation equation for droplets
(2). It is easy to show that this is indeed the case as long as !max → ∞ or as �!(V ) � 0
for !¿ !max, respectively. The last condition gives us a useful criterion for the choice of !max:
if during the numerical calculation �amax becomes signiKcantly diIerent from zero, the number
!max is too small for the process under consideration, and must be increased.

4.2. Volume of droplets

In the last step for the reduction of variables, we subsume the continuous volumes of the
droplets into sections, see Landgrebe and Pratsinis (1990) for a thorough survey for the case
without enclosures. We indicate the sections by capital indices, A=1; 2; : : : ; Amax; and denote
the volumes of the sections by �A. Moreover, we deKne the boundaries of the sections by

VA=
A∑

B=1

�B for A=1; 2; : : : ; Amax with V0 =0:

Again, the doubling of the volumes of successive sections allows for simpliKcations of the
subsequent calculations (Hunslow, Ryall, & Marshall, 1988), and thus we set

�A=2A−2 TV for A=2; : : : ; Amax so that VA=2A−1 TV for A=1; : : : ; Amax: (19)
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Here, TV deKnes the smallest droplet volume of interest and must be chosen according to the
process under consideration.

With these deKnitions, we have for the number densities of droplets with number of enclosures
in class ! and volume in section A

�A! =
∫ VA

VA−1

�!(V ) dV; A=1; 2; : : : ; Amax: (20)

Correspondingly, if the number density lies in class ! and section A; it will be replaced by the
mean number density

�!(V )=
�A!
�A

; V ∈ (VA−1; VA): (21)

The evolution equation for the number densities �A! follows from integration of Eq. (14) over
the interval (VA−1; VA) and reads after some rearrangements

d�A!
dt

= IA!−1; !−1 +
!−1∑
$=1

(1−B!$)[IA!$ + IA$!] +
!−2∑
$=1

B!−1;$[IA!−1;$ + IA$;!−1]

−
!max∑
$=1

Amax∑
B=1

	AB�A!�
B
$ +

K0ln 2
�A

!max∑
$=!

A!$ �A$: (22)

Some details of the calculation are given in Appendix D. In particular, IA!$ is an abbreviation
for a non-linear function of the variables �A! given by

IA00 =0;

I 1!$=
1
2
(	11 − 	̂11)�1!�

1
$;

I 2!$=
1
2
	̂11�1!�

1
$ +

1
2
(	21 − 	̂21)[�1!�

2
$ + �2!�

1
$];

I A!$=
1
2

[
	A−1;A−1�A−1

! �A−1
$ +

A−2∑
B=1

	̂A−1;B[�A−1
! �B$ + �B! �

A−1
$ ]

+
A−1∑
B=1

(	AB − 	̂AB)[�A!�
B
$ + �B! �

A
$]

]
for A¿ 3; (23)

where 	AB and 	̂AB are mean collision frequencies for the droplets and are computed by

	AB=
∫ VB

VB−1

∫ VA

VA−1

	(U;W )
�A�B

dW dU; 	̂AB=
∫ VB

VB−1

∫ VA

VA−U
	(U;W )
�A�B

dW dU: (24)

The interpretation of the various terms is as follows: terms in IA!$ with 	AB, 	̂AB and 	A−1;B,
	̂A−1;B refer to the gain of droplets in section A due to collision of droplets in section A and B
or the collision of droplets in (A− 1) and B, respectively. Again, the terms in the last line of
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Eq. (22) refer to the loss due to collisions of droplets of type (!; A) with any other type ($; B)
and to the coagulation of enclosures, described by the matrix A!$.
The original equation (3) conserves the total volume density, vtot(t), as deKned in Eq. (4).

In terms of the discrete variables �A! , where there are diIerent volumes in one section, the total
volume density can be computed from

vtot(t)=
∑
!;A

TVA�A! :

Here, TVA is a suitable mean droplet volume associated with Section A. We have not tried to
Knd an analytical expression for TVA but found empirically from our numerical data that vtot is
almost constant if we use

TVA=
(
∫ VA
VA−1

Va dV )1=a∫ VA
VA−1

dV
with a � 1:16: (25)

With this choice the total volume is well conserved with an error of less than 1%.

4.3. Dimensionless quantities, time scales

In this section, we introduce dimensionless quantities in order to identify the relevant para-
meters and timescales of our problem. It is natural to measure the volume in multiples of the
volume TV, which is the smallest possible droplet volume. Its value is determined by the initial
conditions.

With u; w deKned as U = u TV; W =w TV; we can write the collision probability as

	(U;W )=	0	(u; w);

where

	0 =
(

3
4�

)1=6(6kT
% TV

)1=2
TV
2=3

and 	(u; w)=
(
1
u
+

1
w

)1=2
(v1=3 + w1=3)2:

The dimensionless time is best deKned as

t̃=
	0
TV
t

and the parameter

K̃0 =
K0

	0
measures the relative frequency of the coagulation of enclosures. Moreover, we introduce the
dimensionless section widths by

�A=�A= TV and vA=VA= TV =
A∑

B=1

�B

and replace �A! by the dimensionless expression

�̃A! = �A! TV: (26)
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For simplicity of the notation, we omit the tildes from now on, so that the equation in dimen-
sionless units reads

d�A!
dt

= IA!−1; !−1 +
!−1∑
$=1

(1−B!$)[IA!$ + IA$!] +
!−2∑
$=1

B!−1;$[IA!−1;$ + IA$;!−1]

−
!max∑
$=1

Amax∑
B=1

	AB�A!�
B
$ + K0

ln 2
�A

!max∑
$=!

A!$ �A$: (27)

The dimensionless counterpart of IA!$ has exactly the same form as IA!$ (23), where now 	AB; 	̂AB
stands for the dimensionless quantities.

	AB=
∫ vA

vA−1

∫ vB

vB−1

	(u; w)
�A�B

dw du; 	̂AB=
∫ vA

vA−1

∫ vB

vB−1−w
	(u; w)
�A�B

dw du:

The matrices A!$, B!$ are numbers, and remain unchanged.

5. Results

We consider a case where initially all droplets have the same volume TV = 4
3� Tr

3 with a radius
Tr=5× 10−9 m; the initial number density of droplets is N0( TV )=1018 m−3. For the calculation
of K0, we need the viscosity of silica. Extrapolating data from Kingery et al. (1976, p. 764),
we Knd

�=10−8:6625(1−3556:03K=T ) kg ms−1

With this formula, we have for the dimensionless values of K0 at T =2300 and 2600K

K0(2300 K)=1:14× 10−9; K0(2600 K)=4:25× 10−8:

The initial number of enclosures in the droplets is assumed to be the maximum number we can
observe on the time scale deKned by the collisions. By the same arguments as in Section 3.3,
we obtain for T =2300 K an initial number of nmax � 30, corresponding to the class !max =6
and for T =2600 K we Knd !max =3. The corresponding initial condition is given by

�A! (t=0)= u0�A;1�!;!max ; u0 = TVN0( TV ) � 5× 10−7:

We compute the coagulation process for T =2300 K, accounting for 12 classes and 15 sections,
and for T =2600 K accounting for 9 classes and 15 sections, respectively.
The contour plots in Fig. 5 show, for T =2300 K, the temporal development of the aerosol

through �A! (A: x-axis, !: y-axis). Recall that A is a measure of the drop size and ! is a measure
of the number of enclosures. We observe the development of a structure which moves in the
(A; !)-plane almost without changing its shape. The development of a self-preserving structure is
well known for the coagulation process of droplets alone (Friedlander, 2000). Here, we observe
a similar behavior for droplets with enclosures.
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Fig. 5. Temporal evolution of �A! for K =1:14×10−9; u0 = 5×10−7 (T =2300 K). Vertical axis: !, horizontal axis: A.
The gray levels refer only to the relative values inside one plot. t is the actual time in seconds.

The diagonal shape of the structure becomes clear if one thinks of the relevant growth
mechanisms: Droplets with a large volume and a large number of enclosures are those that
were newly produced by collisions of smaller droplets with less enclosures. Small droplets
vanish due to collisions. And Knally, the number of droplets with a large number of enclosures
decreases due to enclosure coagulation. Small droplets are those that have encountered fewer
collisions, and therefore, their number of enclosures—never increased by collisions, but rather
decreased by coagulation—is at the bottom left-hand region of the diagonal structure.

Fig. 6 shows the coagulation process with the same parameters, but for a case where initially
all droplets have only one enclosure. At early times, the contour plots diIer from those in Fig. 5,
but with increasing time, we Knd the same self-preserving structure as before—the result be-
comes independent of the initial data.

If one chooses the initial number of enclosures to be larger than nmax; one observes Krst a
decrease of the number of enclosures, with no coagulation of droplets, corresponding to the
results in Section 3.2. This rePects the diIerence in the characteristic time scales for the two
coagulation processes. When the number of enclosures has decreased to nmax as computed in
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Fig. 6. Temporal evolution of �A! for K =1:14× 10−9; u0 = 5× 10−7 (T =2300 K). Initially all droplets contain 1
enclosure. Vertical axis: !, horizontal axis: A. The gray levels refer only to the relative values inside one plot. t is
the actual time in seconds.

Section 3.3, the characteristic times become comparable, the coagulation of droplets sets in, and
the results are close to those in Fig. 5.

In Fig. 7 we show the result for T =2600 K. Due to the higher temperature, the enclosures
move more easily and thus coagulate more frequently. Therefore, the self-preserving structure
is located at lower numbers of enclosures.

In all cases, the structure travels almost horizontally, with a slight ascent towards the right
upper corner. Thus, in later times, the number of enclosures per droplet is increasing. In order
to make this behavior more evident, Fig. 8 shows the number density of enclosures

nd=
∑
n

∫
nNn(V ) dV �

∑
!;A

Tn!�A!

the mean volume of enclosures

Tv=
∑

n

∫
cV=nNn(V ) dV∑
n

∫
Nn(V ) dV

�
∑

!;A(c TVA= Tn!)�A!∑
!;A �A!
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Fig. 7. Temporal evolution of �A! for K =4:25×10−8; u0 = 5×10−7 (T =2600 K). Vertical axis: !, horizontal axis: A.
The gray levels refer only to the relative values inside one plot. t is the actual time in seconds.

and the mean number of enclosures per droplet

Tn=
∑

n

∫
nNn(V ) dV∑

n

∫
Nn(V ) dV

�
∑

!;A Tn!�A!∑
!;A �A!

all in dimensionless quantities. TVA is the mean volume of droplets in section A, see Eq. (25),
and Tn!=(2!−1 + 2!−2)=2 is the mean number of enclosures in class !. The mean volume was
calculated for concentration c=0:1.
The total number density of enclosures decreases due to coagulation (Fig. 8, top), and ac-

cordingly the mean volume of the enclosures grows (Fig. 8, middle).
According to our results, the mean number of enclosures per droplet increases in time (Fig. 8,

bottom). This is in contradiction to the experimental Kndings which show a decrease in the
number of enclosures at later times, see Figs. 1 and 2. Mathematically, the ascent is related
to the term K0=V in the collision probability for enclosures, �m→n (6), which means that in
larger droplets the enclosures coagulate less frequently. We may conclude that our model for
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Fig. 8. Enclosure number density (top, dimensionless), enclosure volume (middle, in fractions of the initial droplet
size) and mean number of enclosures per droplet (bottom) for T =2300 K (initial conditions as in Figs. 5 and 6)
and T =2600 K (initial cond. as in Fig. 7).
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Fig. 9. Temporal evolution of �A! for K =1:14×10−9; u0 = 5×10−7 (T =2300 K) for enclosure collision rate �m→n

given by Eq. (28). Vertical axis: !, horizontal axis: A. The gray levels refer only to the relative values inside one
plot. t is the actual time in seconds.

�m→n is too simple. Indeed, in the derivation of �m→n, we have ignored the size distribution of
the enclosures, as well as the Knite size of the droplets, and in particular the tendency of the
enclosures to stay at the edge of the droplets (see Fig. 1).

Clearly, we would like to see an increase in the enclosure collision rate, which could occur
if the volume dependence in Eq. (6) was smaller. One justiKcation would be that as we noted,
experimental evidence suggests a migration of the enclosures to the surface, implying a surface
diIusion of enclosures, or alternatively a decrease in the eIective volume used in the denomi-
nator of Eq. (6). This argument would favor an exponent of 0.66 for V . We found that if we
replace �m→n by

�̃m→n(V )=
K0

V 1=3

nm
m− n

(28)

we can Knd the desired behavior. The choice of the exponent (1=3) is arbitrary and not justiKed
by any physical considerations. Fig. 9 shows the result. Now, indeed, the number of enclosures
decreases with increasing time.
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The enhancement of the collision rate is not unjustiKed if we consider the surface eIects dis-
cussed above as well as the fact that our present model assumes monodisperse enclosures. These
results show that a better modeling of the inner droplet processes as well as the incorporation
of a polydisperse enclosure model might allow for better agreement with the experiments.
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Appendix A. In#uence of concentration on collision frequency

Let us briePy reconsider our proceedings in Section 3.1, where we computed the collision
probability for enclosures. The use of Eq. (5) is justiKed, if the enclosures can be considered as
point particles, i.e. if their volume is very small compared to the droplet volume. This manifests
itself in the deKnition of the number density of enclosures as �= n=V . If the enclosures assume
a reasonable amount of the droplets volume, we have to consider the corrected number density

�a=
n
Va

instead, where Va is the volume that is indeed available for one enclosure. This idea comes from
statistical thermodynamics, where one corrects the ideal gas law for the molecular volume, to
arrive at the van-der-Waals-equation (Lee, Sears, & Turcotte, 1973). Following the arguments
in Lee, Sears, and Turcotte (1973), we conclude that

Va=V − 4cV;

where cV is the volume occupied by the enclosures. Replacing V by Va, we arrive at the
corrected collision frequency

1
tm→n

= �m→n(V )=
K0

V (1− 4c)
nm
m− n

:

Thus, the probability of agglomeration increases with larger concentration c, i.e. for larger
enclosures. Still, the equation is restricted to small concentrations—the available volume must
be positive. It must be emphasized, though, that this correction does not change the dependence
of �m→n on the volume.

Appendix B. The matrix A��

For the determination of the matrix A!$; we consider

S!=
M!∑

n=M!−1+1

[
nmax∑

m=n+1

nm
m− n

Nm −
n−1∑
m=1

nm
n−m

Nn

]
:
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With Eq. (13) and nmax =M!max ; we can write

S!=
M!∑

n=M!−1+1


 M!∑
m=n+1

nm
m− n

Nm +
!max∑

$=!+1

M$∑
m=M$−1+1

nm
m− n

Nm −
n−1∑
m=1

nm
n−m

Nn




=
!max∑

$=!+1

1
"$

M!∑
n=M!−1+1

M$∑
m=M$−1+1

nm
m− n

�$ − 1
"!

M!∑
n=M!−1+1

[
M!∑

m=n+1

nm
n−m

+
n−1∑
m=1

nm
n−m

]
�!:

For the second expression, we have

M!∑
n=M!−1+1

[
M!∑

m=n+1

nm
n−m

+
n−1∑
m=1

nm
n−m

]
=

M!∑
n=M!−1+1

M!∑
m=1
m�=n

nm
n−m

=
M!∑

n=M!−1+1

M!−1∑
m=1

nm
n−m

;

where we have used that, due to symmetry

M!∑
n=M!−1+1

M!∑
m=M!−1+1

m�=n

nm
n−m

=0:

We obtain Knally that

S!=
!max∑

$=!+1

A!$ �$ +A!! �!

with the matrix elements given by Eq. (16).

Appendix C. The matrix B��

We write Nm(U )=Nm; Nm(U − V )= TNm and consider the quantity

S!=
M!∑

n=M!−1+1

n−1∑
m=1

Nm TNn−m

that appears in the summation of the Krst term on the right-hand side of Eq. (3) over the class !.
This can be written as

S!= s! − s!−1;

where

s!=
M!∑
n=2

n−1∑
m=1

Nm TNn−m=
M!−1∑
m=1

M!∑
n=m+1

Nm TNn−m=
M!−1∑
m=1

M!−m∑
n=1

Nm TNn and s0 = s1 =0:
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Fig. 10. Calculation of s!: all points in the gray area appear in the summation.

Fig. 11. Computation of S6, see text for description.

The reversion of the order of summation is best understood by means of Fig. 10, that shows
the area of summation for s!. It also involves the substitution (n−m) → n. The meaning of S!
is best read oI from Fig. 11 which pictures the situation for the calculation of S6:
s6 is the sum over all points on and below the upper dashed diagonal, and s5 is the sum over

all points below (but not on) the lower dashed diagonal.
S6 is the sum over all those points on and inside the dashed curve in the Kgure.
All points inside the rectangles (1+M$−1; M$)(1+M�−1; M�) refer to values of Nm TNn= �$ T��=

("$"�), see Eq. (13). For the calculation of S! we have to multiply �$ T��=("$"�) with the number
of those points of the rectangles that lie inside the dashed region, and sum over all rectangles.
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It is due to our peculiar choice (12) of the class width "! that S! can be calculated easily as

S!= �!−1 T�a−1 +
!−2∑
$=2

3"2$
2"!−1"$

(�!−1 T�$ + �$ T�!−1) +
1

"!−1
(�!−1 T�1 + �1 T�!−1)

+
!−1∑
$=2

"!"$ − 3
2"

2
$

"!"$
(�! T�$ + �$ T�!) +

"! − 1
"!

(�! T�1 + �1 T�!):

Introducing the matrix B!$ given by Eq. (8), we Knd Knally

S1 =0;

S!= �!−1 T�a−1 +
!−1∑
$=1

(1−B!$)(�! T�$ + �$ T�!) +
!−2∑
$=1

B!−1;$(�!−1 T�$ + �$ T�!−1):

Note that B21 =1="2 =1, so that S2 = �1 T�1.

Appendix D. The functions IA!$

We compute

IA!$=
∫ VA

VA−1

I!$(V ) dV =
1
2

∫ VA

VA−1

∫ V

0
	(U;V −U )�!(U )�$(V −U ) dU dV

which after the substitution V −U → W can be written as

IA!$= iA!$ − iA−1
!$ with iA!$=

1
2

∫ VA

0

∫ VA−U

0
	(U;W )�!(U )�$(W ) dW dU; i0!$=0:

The meaning of IA!$ is best read oI from Fig. 12 which shows the situation for the calculation of
I 6!$: All points inside the rectangles (VA−1; VA)(VB−1; VB) refer to values of �!(U )�$(W )= �A!�B$=
(�A�B), see Eq. (21). I6 is the integral over the dashed curve in the Kgure. After replacing the
number densities in the sections with the mean values (21) we Knd

I 1!$=
1
2

∫ V1

0

∫ V1−U

0

	(U;W )
�1�1

dWdU �1!�
1
$;

I 2!$=
1
2

∫ V1

0

∫ V!

V1−U
	(U;W )
�1�1

dWdU �1!�
1
$ +

1
2

∫ V1

0

∫ V2−U

V1

	(U;W )
�1�2

dW dU [�1!�
2
$ + �2!�

1
$];
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Fig. 12. Calculation of IA!$, see text for details.

IA!$=
1
2

∫ VA−1

VA−2

∫ VA−1

VA−2

	(U;W )
�A−1�A−1

dWdU�A−1
! �A−1

$

+
1
2

A−2∑
B=1

∫ VB

VB−1

∫ VA−1

VA−1−U
	(U;W )
�A−1�B

dW dU [�A−1
! �B$ + �B! �

A−1
$ ]

+
1
2

A−1∑
B=1

∫ VB

VB−1

∫ VA−U

VA−1

	(U;W )
�A�B

dW dU [�A!�
B
$ + �B! �

A
$] (A¿ 3):

Introduction of the mean collision frequencies (24) yields IA!$ in the form of Eq. (23).
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