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we will present simple analytical approximations to the shap

In this paper, the self-preserving theory of coagulating aerosolsis  of the volume distributions, obtained by fitting to numerical so
presented in a new way: the logarithmic volume (or mass) distribu- lutions of the coagulation equation.

tion of an aerosol undergoing coagulation stays invariant in shape at
long times. This is shown for both the free molecular and continuum

: . - . THEORY
regime collision frequency functions as well as the constant collision
frequency function. In addition, new simple approximate forms are
presented for the self-preserving distributions, based on numerical
solutions to the discrete coagulation equation.  © 2001 Academic Press

Let n(v, t)dv be the particle humber concentration per uni
mass of gas in a volume range betweemndv + dv at timet.
Then the coagulation equation for the number concentratic
function is (11)

INTRODUCTION @)
at

}/ B(u, v —uwn(u)n(v — u)du
Prediction of the size distribution of a coagulating aerosol 2Jo
has been a continuing interest in aerosol physics. Analytical
solutions have been obtained only in certain special cases, cor-
responding to simplified forms of the collision frequency func-
tion (CFF) and/or the initial particle size distribution (1-6). For Here the first term on the right-hand side is the rate of for
real systems, an important discovery was made by Friedlan#iegtion of particles of size by smaller particles of sizasand
and Wang (3) for coagulation in the continuum regime: by uge— U. The factor 2 must be introduced since collisions are
of a similarity transformation to the size distribution functiongounted twice in the integral. The second term is the rate of lo:
one can find an asymptotic form, the self-preserving distrib@f particles of sizev by collisions with all other particles. The
tion (SPD), after long times that is independent of the initiderm B(u, v) is the collision frequency function, which can be
conditions. This was later (7) shown to apply also for the fre#ritten as

molecular particle size regime. Vemuey al. (8) studied the

— fooo B(u, v)n(u)n(v) du. [1]

time to reach the SPD for various initial distributions and found AU, v)
that, especially, if the initial distribution is narrow the time lag 2KT (i i) (U3 4 v3)
to reach the SPD is very short. 3u \ul3 13 '
In this paper, we present the self-preserving theory in a new continuum regime;
convenient way, i.e., that the logarithmic volume (or mass) dis- = 16 12 12 [2a,b]
tribution of an aerosol undergoing coagulation is invariant in (i) (ﬂ) <} }) (U3 4 v13)’
shape when the size variable axis (in this case particle volume) is 4 Pp u
scaled logarithmically. This is actually a standard way to present free molecular regime

aerosol particle size distributions (9—11). This will be done first

for the simple constant CFF, starting from Schmoluchowski’s Friedlander and Wang (3) pointed out that if the collisior
(1) analytical solution of the discrete coagulation equation, an@quency function is a homogenous function of particle volume
then for the continuum and free molecular CFF, using the sinhat is if

ilarity transformation of Friedlander and Wang (3). In addition,
B(hu, av) = A"B(u, v), 3]
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reduces the coagulation equation [1] to an ordinary integré¢ long times, that is, whenis large, the following approxima-
differential equation fory> of . This solution is called the tions apply,
self-preserving solution of the coagulation equation. It is an
asymptotic solutiony(n) toward which all systems converge, i 2 R R 1 . )
regardless of the initial distribution. It is easily checked that the 75 ~ EXP<—2f—+1) and t(1+1t)~ Z(Zt + 1),
collision frequency functions for the free molecular and con-
tinuum regimes are homogenous functions, which means that [10]
asymptotic solutions exist.

In this paper, we focus on the logarithmic volume distributioBnd¢yx becomes
#'°9(v), instead of the number distribution,

4NOK 2k
d Pk L exp( ) [11]

#90) = Joos = v =), 18] BN

Forlargek = v/vq, the discrete distribution can be approximatec
in which @ is the cumulative volume distribution function a#pd with a continuous one,
the volume distribution function (10). We will show that this dis-

tribution will stay constant in shape for a coagulating aerosol in 4o ANOZ v
the free molecular or continuum regime as well as for a constant V) = = tu g Tw 12
fr . o0) = - = e~ | [12]
collision frequency function. v (2t +1) t+
Constant Collision Frequency Function inwhich @ is the cumulative volume distribution. Singés now
If the collision frequency functiors is a constant, then the the continuous number density distribution atlong times, we cz
discrete version (11) of the coagulation equation directly obtain the corresponding logarithmic distribution
dNe 138 > 2v)’
k = 2L
_ == B(vi, vk—i)Ni Nk—i — N Bvi, )N [6] 0g(1) — (,\ ”1> expl — ——» ' 13
dt 2; i o) ooy P\ T 1 [13]

with initial -conditions Ny(t = 0) = Ny and Nx(t =0)=The time evolution of the volume corresponding to the peak «
0—i.e., all the pamcleslare assqmed to be in the first size clagg distributionvmege can be found by differentiating the distri-
att = 0—has an analytical solution bution with respect te and setting to zero and is

LU € A L
eyt 2

Fo

[7] Umode = Ul(zf +1). [14]

Thus, we can rewrite the logarithmic distribution function intc
In this version of the coagulation equatiaNy is the number the following convenient form:
concentration in size clagsand the volumes of the size classes
are successive multiples of the first omg:= ku;. 2 2 2
In the discrete solution, each size bin is of widihand thus, ¢'°9(v) = Dot <—> eXp(——) . [19]
the number distribution density functionis vmodd(t) vmode(t)

Ni NOFk-1 It is now clear that this distribution stays invariant in shape o
K= — = —21 [8] alogarithmic plot as time evolves, since it is only a function o
Ave  v(1+D the ratiov/vmode
) ) . ) ) R _ From the distribution, Eq. [15], it is straightforward to further
in which we have defined a dimensionless time t/z. Inthis  ghow that the volume (or mass) mean volume is ajgeand

paper, we are primarily interested in the behavior of the volumg,t the number mean volume, or simply the mean volum
(or mass) distributionp of the particles. For the coagulation;g

equation with a constant CFF, we have simply

" o NPk N9 £\
=V = r~ = = = = .
KRR T @D TR+ 141

—  Umode
= . 16
v=" [26]

Thus, the logarithmic volume distribution function can also b
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and
¢, 1) = ve(v, 1) = DY (n). [21]

This means that the shape of the logarithmic volume (or mas
distribution has an asymptotic form, which is independent o
time, and the functional form is presented as in Eq. [21], iI
whichn = v/vandy is the self-preserving distribution function
introduced by Friedlander and Wang (1966) for the continuur
regime or by Laiet al. (1972) for the free molecular regime.
The functionsp'®? are presented graphically in Figs. 2—4 for
the constant, free molecular, and continuum collision frequenc
functions, respectively. They have been obtained numerical
by solving the discrete coagulation equation until an asymptot
form is reached. In Figs. 2a, 3a, and 4a hexis is linear and

in 2b, 3b, and 4b logarithmic. Since the particle size spectrul

FIG. 1. Dynamics of the logarithmic volume distribution for coagulatio
with a constant CFF. The distributions are the exact analytical solutioyis at
5, 50, and 500 for the coagulation equation, Eq. [5].

"that has to be spanned is quite large, it is impractical to us
the linear spacingy = kv;. Instead, we divide the size axis

written as 06
N2 v 0.5
$'%9(v) = qam(:) exp(—:). [17]
v v 04
From this distribution, one can retrieve the number distribution & 03 4
function directly, and it is % '
, 0.2 -
N v
n(v) = —© exp(— :) : [18]
Dot v 0.1 -
which agrees with the solution by Mulholland and Baum (5) for 0.0 . .
a similar problem, but using a Junge distribution as the initial 0.01 0.1 1 10
distribution. V/Vmode
The evolution of the shape of the volume distribution with
o : o I 10"
time, i.e., the exact solution to Eq. [6], is illustrated in Fig. 1. It
is clear that a self-preserving form is indeed obtained, and fur- 100 |
thermore, this form is reached very quickly. Already at = 5, 10
whenvmege/v: = 11 orvg /vy = 5.5, the distribution appears to
be very similar in shape to that at long times. _ 1024
g
g 10-3 -
Free Molecular and Continuum Regimes g
10+
For the free-molecular and continuum regime collision fre-
guency functions [2a,b] there is no analytical solution available 10+
for the coagulation (Eg. [1] or [6]). However, the logarithmic 10 4
volume (or mass) distribution can be proven to remain invariant
by just analyzing the similarity transformation [4a,b]. 107 - -
Since 0.01 0.1 1 10
V/vmode
Niot FIG. 2. Self-preserving logarithmic volume distributions for constant CFF

2
.0 = 2y () = ), [19)

¢(v.t) = vn(v. t) = N/ (n) [20]

coagulation, with (a) a linear and (b) a logarithnyi@xis. The circles are the
result from the numerical solution, and the lines are least-squares curve fits
the form@'°9/ drot = £2 exp(—£P°), in which& = v/vmode
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The shape of the volume distribution with a constant CF
0.5 1 (Fig. 2) is exactly the one predicted by Eq. [15]. Furthermore, th
curve representing continuum regime coagulation (Fig. 4) fal
0.4 - almost perfectly on this same curve. The free molecular regin
volume distribution function (Fig. 3) is clearly different. All
5 54 three curves can be very well approximated with the function:
e = form
2
R=al
02 T ¢|
209 _ g2 exp-£) [24]
tot
0.1 1
inwhich& = 2v/vmegeand the least-squares fits foandb give
0.0 . a=2,1804, and 2.005 and = 1, 0.9512, and 1.002 for con-
' 0.01 0.4 10 stant, free-molecular, and continuum CFFs, respectively. The f
YNV mode are practically perfect for large particle sizes. In the lower enc
101 there is some deviation, which can be seen from the logarithnr
plots (Figs. 2—4b). The linear plots (Fig. 2—4a) illustrate nicel:
10° the deviation from the lognormal shape.
10-1 .
-2
5 10 0.6
o g
= 1044 '
105 4 0.4 -
10 S
0+ oy
g 0.3
107 ; B
0.01 01w, 10 0.2 -
mode
FIG.3. Self-preserving logarithmic volume distributions for free molecular 0.1 -
regime coagulation, with (a) linear and (b) logarithrgi@xis. The circles are
the result from the numerical solution, and the lines are least-squares curve fits
of the forme'°9/ ot = £2 exp(—£P), in which& = v/vmode 0.0 T T
0.01 0.1 1 10
V/vmode
into size sections geometrically; = b*vy. Thus, the discrete 10!
coagulation equation must be written as
100 -
dN¢ 1
o - E;Xijkﬁij Ni N;j _ZﬁikNi Nk, [22] 10
- 10<2_
in which 2
o .
(v + ) 2 ]
v — (Vi Vj . ~
M; if vk < vi +vj < kg1 < 4041
Uk4+1 — Uk
) ) 105
— Vi + Vj) — Uk— .
e = WU T ey < O
Uk — Uk-1 106
0; otherwise. 107 . .
. . . " . . 0.01 0.1 10
The functionyjjk is a size-splitting operator, which divides VWV mode

particles in correct proportions (number and mass are conservetlj:

into size classes, when two particles collide and the resulti

pgrtiple qoes nOF fall exactly i':]to a size cllass. In generating thR the result from the numerical solution, and the lines are least-squares cu
distributions of Fig. 2 the logarithmic spacibg= 273 was used. fits of the formg'°9/ diot = £2 exp(—£P), in which& = v/vmode

]G. 4. Self-preserving logarithmic volume distributions for continuum

ime coagulation, with (a) a linear and (b) a logarithiyvaxis. The circles
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The numerically generated self-preserving distributions wereThis analysis presented provides a very simple and fast sol
also used to calculate the asymptotic relationship betwggp tion to coagulation problems: the evolution of the mean particl
andv for continuum and free molecular regime coagulation: size is obtained from the well-known self-preserving theory o

Friedlander and the shape of the size distribution from the an

Vmode 210 for free-mol lytical app.roximations pres.ented in this.work. _

= [25] Also, this way of presenting the classical self-preserving the

ory is in our view much easier to grasp for students of aeros

science than the “standard” way, presented in many well-know

These relationships enable one to use Eq. [24] to generate oeks. The fact that the logarithmic mass distribution stays col

distributions by using the mean particle volume instead of tilsant in shape is both easy to remember and simple to use
peak volume, if desired. quick estimates.

v | 194 for continuum

CONCLUSIONS REFERENCES

. . 1. Schmoluchowski, M. VZ. Phys. Chem. LeipzgR, 129 (1917).

In this paper, we haye presented the self-preserving theory 8f schumann, TJ. Roy. Meteorol. So66, 1965 (1940).
acoagulating aerosol in a new way. We have shown that the loga- Friedlander, S. K., and Wang, C. LL. Colloid Interface Sci22,126 (1966).
rithmic volume (or mass) distribution is invariant in shape wherf. Scott, W. L..J. Atmos. Sci25, 54 (1968).
the size axis (in this case particle volume) is scaled logarithmp: Mulholland, G. W., and Baum, H. Rehys. Rev. Letd5, 761 (1980).

Ilv. We have tested this approach for the case of a constant C6]_Tamb0ur, Y., and Seinfeld, J. H., Colloid Interface Sci74,260 (1980).
cally. this appro: _ _ Q" Lai, F. 5., Friedlander, S. K., Pich, J., and Hidy, G. 8 Colloid Interface
lision freque_ncy f_um_:tlor_l for_ Whlch_ an analytical solution to the_ Sci.39,395 (1972).
self-preserving distribution is obtained. We have also tested thé& Vemury, S., Kusters, K. A., and Pratsinis, S. E.Colloid Interface Sci.
approach for both free molecular and continuum regime coag- 165,53 (1994). _
ulation against a sectional solution to the coagulation equatiof. Hinds W. C. Aerosol TechnologyWiley, New York, 1982.

10. Seinfeld, J. H., and Pandis, S. NAtfhospheric Chemistry and Physics.
In all cases we recover the correct shapes for the self-preserving,, ey, New York, 1998
distribL_Jtions Wh_en compgred against either the analytical ail Friediander, S. K., Smoke Dust and HaZeOxford Univ. Press,
numerically derived solutions for the three cases. Oxford, 2000.



	INTRODUCTION
	THEORY
	FIG. 1.
	FIG. 2.
	FIG. 3.
	FIG. 4.

	CONCLUSIONS
	REFERENCES

