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Self-Preserving Theory for the Volume Distribution
of Particles Undergoing Brownian Coagulation
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In this paper, the self-preserving theory of coagulating aerosols is
presented in a new way: the logarithmic volume (or mass) distribu-
tion of an aerosol undergoing coagulation stays invariant in shape at
long times. This is shown for both the free molecular and continuum
regime collision frequency functions as well as the constant collision
frequency function. In addition, new simple approximate forms are
presented for the self-preserving distributions, based on numerical
solutions to the discrete coagulation equation. C© 2001 Academic Press
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INTRODUCTION

Prediction of the size distribution of a coagulating aero
has been a continuing interest in aerosol physics. Analy
solutions have been obtained only in certain special cases
responding to simplified forms of the collision frequency fun
tion (CFF) and/or the initial particle size distribution (1–6). F
real systems, an important discovery was made by Friedla
and Wang (3) for coagulation in the continuum regime: by
of a similarity transformation to the size distribution functio
one can find an asymptotic form, the self-preserving distr
tion (SPD), after long times that is independent of the ini
conditions. This was later (7) shown to apply also for the f
molecular particle size regime. Vemuryet al. (8) studied the
time to reach the SPD for various initial distributions and fou
that, especially, if the initial distribution is narrow the time l
to reach the SPD is very short.

In this paper, we present the self-preserving theory in a
convenient way, i.e., that the logarithmic volume (or mass)
tribution of an aerosol undergoing coagulation is invarian
shape when the size variable axis (in this case particle volum
scaled logarithmically. This is actually a standard way to pre
aerosol particle size distributions (9–11). This will be done fi
for the simple constant CFF, starting from Schmoluchows
(1) analytical solution of the discrete coagulation equation,
then for the continuum and free molecular CFF, using the s
ilarity transformation of Friedlander and Wang (3). In additio
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we will present simple analytical approximations to the sha
of the volume distributions, obtained by fitting to numerical s
lutions of the coagulation equation.

THEORY

Let n(v, t)dv be the particle number concentration per un
mass of gas in a volume range betweenv andv + dv at timet .
Then the coagulation equation for the number concentrat
function is (11)

∂n(v)

∂t
= 1

2

∫ v

0
β(u, v − u)n(u)n(v − u) du

−
∫ ∞

0
β(u, v)n(u)n(v) du. [1]

Here the first term on the right-hand side is the rate of fo
mation of particles of sizev by smaller particles of sizesu and
v − u. The factor 1/2 must be introduced since collisions ar
counted twice in the integral. The second term is the rate of lo
of particles of sizev by collisions with all other particles. The
termβ(u, v) is the collision frequency function, which can b
written as

β(u, v)

=



2K T

3µ

(
1

u1/3
+ 1

v1/3

) (
u1/3+ v1/3

)
,

continuum regime;(
3

4π

)1/6(6K T

ρp

)1/2(1

u
+ 1

v

)1/2 (
u1/3+ v1/3

)2
free molecular regime.

[2a,b]

Friedlander and Wang (3) pointed out that if the collisio
frequency function is a homogenous function of particle volum
that is if

β(λu, λv) = λnβ(u, v), [3]

then the transformation

η = v

v̄(t)
v̄(t)n(v, t) = N(t)ψ(η) [4a,b]
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PARTICLES UNDERGOING

reduces the coagulation equation [1] to an ordinary integ
differential equation forψ of η. This solution is called the
self-preserving solution of the coagulation equation. It is
asymptotic solutionψ(η) toward which all systems converg
regardless of the initial distribution. It is easily checked that
collision frequency functions for the free molecular and c
tinuum regimes are homogenous functions, which means
asymptotic solutions exist.

In this paper, we focus on the logarithmic volume distribut
φ log(v), instead of the number distribution,

φ log(v) = d8

d(logv)
= v(φ)(v) = v2n(v), [5]

in which8 is the cumulative volume distribution function andφ
the volume distribution function (10). We will show that this d
tribution will stay constant in shape for a coagulating aeroso
the free molecular or continuum regime as well as for a cons
collision frequency function.

Constant Collision Frequency Function

If the collision frequency functionβ is a constant, then th
discrete version (11) of the coagulation equation

d Nk

dt
= 1

2

k−1∑
i=1

β(vi , vk−i )Ni Nk−i − Nk

∞∑
i=1

β(vi , vk)Ni [6]

with initial conditions N1(t = 0)= N0
1 and Nk(t = 0)=

0—i.e., all the particles are assumed to be in the first size c
at t = 0—has an analytical solution

Nk =
N0

1 ·
(

t
τ

)k−1(
1+ t

τ

)k+1 ;
1

τ
= βN0

1

2
. [7]

In this version of the coagulation equation,Nk is the number
concentration in size classk, and the volumes of the size class
are successive multiples of the first one:vk = kv1.

In the discrete solution, each size bin is of widthv1, and thus,
the number distribution density functionn is

nk = Nk

1vk
= N0

1 t̂ k−1

v1(1+ t̂)k+1
, [8]

in which we have defined a dimensionless timet̂ = t/τ . In this
paper, we are primarily interested in the behavior of the volu
(or mass) distributionφ of the particles. For the coagulatio
equation with a constant CFF, we have simply

0 k−1 0 ( )k
φk = vknk = N1kt̂

(1+ t̂)k+1
= N1k

t̂(1+ t̂)

t̂

1+ t̂
. [9]
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At long times, that is, whent is large, the following approxima-
tions apply,

t̂

1+ t̂
≈ exp

(
− 2

2t̂ + 1

)
and t̂(1+ t̂) ≈ 1

4
(2t̂ + 1)2,

[10]

andφk becomes

φk = 4N0
1k

(2t̂ + 1)2
exp

(
− 2k

2t̂ + 1

)
. [11]

For largek = v/v1, the discrete distribution can be approximat
with a continuous one,

φ(v) = d8

dv
= 4N0

1
v
v1

(2t̂ + 1)2
exp

(
− 2 v

v1

2t̂ + 1

)
, [12]

in which8 is the cumulative volume distribution. Sinceφ is now
the continuous number density distribution at long times, we
directly obtain the corresponding logarithmic distribution

φ log(v) = 8tot

(
2 v
v1

)2

(2t̂ + 1)2
exp

(
− 2 v

v1

2t̂ + 1

)
. [13]

The time evolution of the volume corresponding to the peak
the distributionvmodecan be found by differentiating the distri
bution with respect tov and setting to zero and is

vmode= v1(2t̂ + 1). [14]

Thus, we can rewrite the logarithmic distribution function in
the following convenient form:

φ log(v) = 8tot

(
2v

vmode(t)

)2

exp

(
− 2v

vmode(t)

)
. [15]

It is now clear that this distribution stays invariant in shape
a logarithmic plot as time evolves, since it is only a function
the ratiov/vmode.
From the distribution, Eq. [15], it is straightforward to furthe
show that the volume (or mass) mean volume is alsovmode and
that the number mean volume, or simply the mean volum
is

v̄ = vmode

2
. [16]
Thus, the logarithmic volume distribution function can also be
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FIG. 1. Dynamics of the logarithmic volume distribution for coagulatio
with a constant CFF. The distributions are the exact analytical solutions att/τ =
5, 50, and 500 for the coagulation equation, Eq. [5].

written as

φ log(v) = 8tot

(v
v̄

)2
exp

(
−v
v̄

)
. [17]

From this distribution, one can retrieve the number distribut
function directly, and it is

n(v) = N2
tot

8tot
exp

(
−v
v̄

)
, [18]

which agrees with the solution by Mulholland and Baum (5)
a similar problem, but using a Junge distribution as the ini
distribution.

The evolution of the shape of the volume distribution w
time, i.e., the exact solution to Eq. [6], is illustrated in Fig. 1
is clear that a self-preserving form is indeed obtained, and
thermore, this form is reached very quickly. Already att/τ = 5,
whenvmode/v1 = 11 orv̄1/v1 = 5.5, the distribution appears t
be very similar in shape to that at long times.

Free Molecular and Continuum Regimes

For the free-molecular and continuum regime collision f
quency functions [2a,b] there is no analytical solution availa
for the coagulation (Eq. [1] or [6]). However, the logarithm
volume (or mass) distribution can be proven to remain invar
by just analyzing the similarity transformation [4a,b].

Since

n(v, t) = N 2
tot

8
ψ(η) = Ntot

v̄
ψ(η), [19]
tot

φ(v, t) = vn(v, t) = Ntotηψ(η) [20]
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and

φ log(v, t) = vφ(v, t) = 8totη
2ψ(η). [21]

This means that the shape of the logarithmic volume (or m
distribution has an asymptotic form, which is independent
time, and the functional form is presented as in Eq. [21],
whichη = v/v̄ andψ is the self-preserving distribution functio
introduced by Friedlander and Wang (1966) for the continu
regime or by Laiet al. (1972) for the free molecular regime.

The functionsφ log are presented graphically in Figs. 2–4 f
the constant, free molecular, and continuum collision freque
functions, respectively. They have been obtained numeric
by solving the discrete coagulation equation until an asympt
form is reached. In Figs. 2a, 3a, and 4a they-axis is linear and
in 2b, 3b, and 4b logarithmic. Since the particle size spect
that has to be spanned is quite large, it is impractical to
the linear spacingvk = kv1. Instead, we divide the size ax

FIG. 2. Self-preserving logarithmic volume distributions for constant C
coagulation, with (a) a linear and (b) a logarithmicy-axis. The circles are the

result from the numerical solution, and the lines are least-squares curve fits of
the formφ log/8tot = ξa exp(−ξb), in whichξ = v/vmode.
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FIG. 3. Self-preserving logarithmic volume distributions for free molecu
regime coagulation, with (a) linear and (b) logarithmicy-axis. The circles are
the result from the numerical solution, and the lines are least-squares cur
of the formφ log/8tot = ξa exp(−ξb), in whichξ = v/vmode.

into size sections geometrically:vk = bkv1. Thus, the discrete
coagulation equation must be written as

d Nk

dt
= 1

2

∑
i, j

χi jkβi j Ni Nj −
∑

i

βik Ni Nk, [22]

in which

χi jk =



vk+1− (vi + v j )

vk+1− vk
; if vk ≤ vi + v j < vk+1

(vi + v j )− vk−1

vk − vk−1
; if vk−1 ≤ vi + v j < vk

0; otherwise.

[23]

The functionχi jk is a size-splitting operator, which divide
particles in correct proportions (number and mass are conse
into size classes, when two particles collide and the resu

particle does not fall exactly into a size class. In generating
distributions of Fig. 2 the logarithmic spacingb = 21/3 was used.
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The shape of the volume distribution with a constant C
(Fig. 2) is exactly the one predicted by Eq. [15]. Furthermore,
curve representing continuum regime coagulation (Fig. 4) f
almost perfectly on this same curve. The free molecular reg
volume distribution function (Fig. 3) is clearly different. A
three curves can be very well approximated with the functio
form

φlog

8tot
= ξa exp(−ξb), [24]

in whichξ = 2v/vmodeand the least-squares fits fora andb give
a = 2, 1.804, and 2.005 andb = 1, 0.9512, and 1.002 for con
stant, free-molecular, and continuum CFFs, respectively. The
are practically perfect for large particle sizes. In the lower e
there is some deviation, which can be seen from the logarith
plots (Figs. 2–4b). The linear plots (Fig. 2–4a) illustrate nic
the deviation from the lognormal shape.

FIG. 4. Self-preserving logarithmic volume distributions for continuu
regime coagulation, with (a) a linear and (b) a logarithmicy-axis. The circles
theare the result from the numerical solution, and the lines are least-squares curve
fits of the formφ log/8tot = ξa exp(−ξb), in whichξ = v/vmode.
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The numerically generated self-preserving distributions w
also used to calculate the asymptotic relationship betweenvmode

andv̄ for continuum and free molecular regime coagulation:

vmode

v̄
=
{

2.10 for free-mol.

1.94 for continuum.
[25]

These relationships enable one to use Eq. [24] to generat
distributions by using the mean particle volume instead of
peak volume, if desired.

CONCLUSIONS

In this paper, we have presented the self-preserving theo
a coagulating aerosol in a new way. We have shown that the l
rithmic volume (or mass) distribution is invariant in shape wh
the size axis (in this case particle volume) is scaled logarith
cally. We have tested this approach for the case of a constan
lision frequency function for which an analytical solution to t
self-preserving distribution is obtained. We have also tested
approach for both free molecular and continuum regime co
ulation against a sectional solution to the coagulation equa
In all cases we recover the correct shapes for the self-prese

distributions when compared against either the analytical a
numerically derived solutions for the three cases.
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This analysis presented provides a very simple and fast s
tion to coagulation problems: the evolution of the mean part
size is obtained from the well-known self-preserving theory
Friedlander and the shape of the size distribution from the a
lytical approximations presented in this work.

Also, this way of presenting the classical self-preserving t
ory is in our view much easier to grasp for students of aero
science than the “standard” way, presented in many well-kno
books. The fact that the logarithmic mass distribution stays c
stant in shape is both easy to remember and simple to us
quick estimates.
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