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Superhard nanocrystalline silicon carbide films
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Nanocrystalline silicon carbide films were deposited by thermal plasma chemical vapor deposition,
with film growth rates on the order of 1@m/min. Films were deposited on molybdenum
substrates, with substrate temperature ranging from 750-1250 °C. The films are composed primarily
of B-SiC nanocrystallites. Film mechanical properties were investigated by nanoindentation. As
substrate temperature increased the average grain size, the crystalline fraction in the film, and the
hardness all increased. For substrate temperatures above 1200 °C the average grain size equaled
10-20 nm, the crystalline fraction equaled 80-85 %, and the film hardness equaled approximately 50
GPa. ©2005 American Institute of PhysidDOI: 10.1063/1.1920434

Recently there has been a flurry of interest in superhardome amorphous material may be present, the films are pri-
Si,Cy(y=x) materials, where “superhard” is defined to meanmarily crystalline.
hardness=40 GPa, well above the hardness of standard The deposition apparatus has been previously
B-SiC, ~28 GPa. Several investigatdrs have synthesized described? The plasma was generated by a radio-frequency
SiC-diamond composites using high-pressure, high{rf) power supply, operating at 3.3 MHz, coupled to an rf
temperature powder sintering, and have reported hardnessisluction torch (a modified Tekna PL-35mounted to a
ranging from 40-80 GPa. Recently it was reported thatcustom-designed CVD chamber. For the experiments re-
hydrogen-free amorphous C-Si films, synthesized by magneported here the deposition chamber pressure equaled 33.3
tron cosputtering of graphite and silicon, had hardness valuge?a, while the rf generator plate power ranged from 15 to 21
of 45-55 GPa for Si mole fractions in the range 38-43 %. KW. The input gases were argon, at a flow rate of 42.5-60
However, amorphous SiC films usually contain hydrogensim; Hy, 0.5-2.5 slm; SiCJ, 68-140 sccm; and methane, at
and have much lower hardness, in the range 10-20@ea  1.0-1.2 times the SiGlflow rate. Molybdenum substrates
8,9. measuring 19 mm in diameter were mounted in the center of

Another factor that could potentially result in superhard-the water-cooled backwall of the CVD chamber. Substrate
ness is nanocrystallinity. While nanocrystalline SiC is cur-temperature, which ranged from 750 to 1250(t@position
rently of interest for its electronic and optical properties, itsurface, was controlled using a previously described
has been less studied for its mechanical properties. There asystem.® Film deposition times ranged from 7 to 15 mins.

only two prior reports of hardness measurements in nandFilm growth rates ranged from 4.1 to 148n/min™* as de-
crystalline SiC. The first, for bulk-sintered compacts pro-termined by micrometer measurement of the film thickness.

duced from SiC powder, reported results for grain sizeshis somewhat overstates the “true” growth rate, as the films
down only to about 70 nm, and the measured hardness d@f€ rough. Scanning electron microscopy images show that
not exceed 27 GP&Ref. 10. The second, SiC films depos-

ited by hypersonic plasma particle deposition, with grain - : : : : ,

sizes around 20 nm, measured a peak hardness of 37 GPa

(Ref. 11). st % P
We previously reported the deposition of nanocrystalline @ims g i n

SiC films by thermal plasma chemical vapor deposition g“” [f i

(TPCVD) (Ref. 12. Deposition rates were extremely high, in 2 ol i i

some cases exceeding @ /min over molybdenum sub- £

strates measuring either 19 or 38 mm in diameter. We report £ o} .

here measurements of mechanical properties of these films,

several of which were found to have hardness values in the wor O tateral indent, Hysitron 1

superhard range, up to about 50 GPa. This result does not | 2 et o, NanoxP

appear to be attributable to either of the two factors discussed oo 8o w0 1000 1100 1200 1300

. . . . Sub: °C
above: there is no evidence of a diamond phase, and, while ubstrate temperature (°C)

FIG. 1. Film hardness vs substrate temperature during deposition, measured
using either the Hysitron Triboscope or the MTS Nano XP nanoindenter, as
¥Electronic mail: slg@tc.umn.edu indicated.
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FIG. 2. X-ray diffraction spectra for films deposited at different substratep|g 3. Average crystallite size and crystalline fraction vs substrate
temperatures. temperature.

the surfaces are partially covered with ball-like hemispheresnatch in the thermal expansion coefficient between SiC and
whose height approximately equals the underlying filmMo, we estimate an upper bound for residual stresses in these
thickness. films of ~0.25 GPa. This level of residual stress would be

Two nanoindenter instruments, a Hysitron Tribolndenterexpected to have little effect on the very large hardnesses and
and an MTS Nano Indenter-XP, were used to determine filnmoduli that we measured, especially as most of the measure-
hardness and elastic modulus. The Hysitron instrument wasients were made with indentations of the film cross section
used for indentation loads from 1 to 10 mN, while the MTS (labeled “lateral indent” in Fig. 1 whereas the residual
instrument was used for indentation loads from 10 to 30Gstress, if it exists, would act in the direction parallel to the
mN. film substrate.

A major assumption when analyzing load-displacement A number of factors could potentially explain the in-
data generated by nanoindentation is that the film surface isrease in hardness observed with increasing substrate tem-
flat. As these films were rough, they needed to be polished tperature. For example, higher substrate temperatures could
obtain repeatable nanoindentation results. Films were polromote the appearance of a diamondspt-bonded carbon
ished and indented both along their cross section and in staphase, or could otherwise affect the crystalline phase com-
dard top-down geometries. To polish film cross sections thgosition, or the grain size and density.
substrates were sectioned with a diamond saw after deposi- Figure 2 shows x-ray diffractiofiXRD) spectra for four
tion. The sample was then mounted in epoxy and polishefilms deposited at different substrate temperatures. XRD
using standard metallography procedures, utilizing SiC sandspectra for all films were dominated by tjgeSiC (111) peak
paper (300, 400, and 600 gyit followed by progressively at 26=35.6°. As substrate temperature increased several
smaller diamond slurries of 9, 3, 1, and 0.2B diam. Be-  other 8-SiC peaks became gradually more pronounced, and
tween each step the samples were sonicated in water. Ftre peak at 35.6° developed shoulders associatedaa8IC.
polishing the films’ top surfaces the substrates were mountetlowever, no XRD peaks associated with diamond were ob-
in a holder and polished as described above. served.

The Hysitron data were analyzed using the Oliver and  The elemental composition in the films was measured
Pharr techniqué‘,1 which infers a single value for hardness with Rutherford backscattering spectrometigBS), using
and modulus for each load-displacement trace. All of the3.7-MeV He ions with a commercial SiC wafer as reference.
Hysitron data points in the figures below represent an averror all but two of the films included in Fig. 1 the C/Si ratio
age over at least ten indentations in different locations, withwas within 3% of stoichiometric SiC, and both of the films
error bars representing one standard deviation. Data obtaindkat lay outside that range were deposited at 800 °C, and had
with the MTS instrument were analyzed using the continu-hardness below 40 GPa. Thus, the superhard films did not
ous stiffness measurement metHdayhich generates many contain excess carbon, as would be required for a SiC-
values of hardness and modulus per each load-displacemediamond composite.
trace. Raman spectroscopy measurements were obtained for

Figure 1 shows measured hardness values versus sutwo films, including the superhard film deposited at 1215 °C.
strate temperature. Other operating conditions varied fofhese measurements were performed using excitation at
these experiments, according to the ranges noted above, €x14.5 and 1064 nr{Fourier-transform Raman spectroscppy
cept that the hydrogen flow rate in all cases equaled 1.0 sImMWhile Raman spectra of nanocrystalline SiC are complex
Regardless of the variation in other deposition conditions, @nd not yet well understood, it can at least be stated that the
clear trend is observed with regard to substrate temperaturepectra for the two films measured show SiC and other fea-
At 750 °C the hardness measure®0 GPa, approximately tures, tentatively ascribed to silicon as@® carbon, but do
equal to the value for standard SiC. As substrate temperaturet show the 1332-ci peak characteristic of diamorl.
increased the measured hardness increased, reaching about If diamond is not present, another possible explanation
40 GPa for a substrate temperature of 870 °C, and about 50r the emergence of superhardness at elevated substrate
GPa for substrate temperatures above 1200 °C. The metemperatures is the appearance in XRD spectra, for substrate
sured modulus of the films varied linearly with the hardnesstemperatures above about 1100 °C, of the peak associated
ranging from~265 to ~515 GPa. with B-SiC{200). In a recent theoretical study @SiC sur-

Measured film hardness can potentially be affected byace energies, a negative surface energy of -0.4 to

residual stresses in the film. Given the relatively small mis—0.49 eV/atom for th¢100] surface was reported, compared
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& : : : T woe In view of the discove? that amorphous SiC can be super-
ol : | hard if free of hydrogen,these results suggest that hardness
i in these films is determined by a combination of nanocrys-
< % oom _ tallite size, crystalline fraction, and the composition of the
] Yoo amorphous phase that lies at grain boundaries.
§of  om 4% 1 Finally, the fracture toughness of four of the films, de-
E 2rom posited at substrate temperatures ranging from 800 to
or / l 1250 °C was determined by indenting the polished top sur-
oL Crystelitesize/ crystsline iracion i face with a Vickers diamond tip using loads high enough so
Otateral Indent, Hysitron that cracks develop from the corners of the indent. The mea-
A lateral indent, Nano XP .
T sured fracture toughness of these films ranged from 3.9 to
Hydrogen flow rate (sim) 4.8 MPa nt’2 which is higher than reported valifés*® for

FIG. 4. Measured hardness vs hydrogen flow rate, for films deposited a,B'SiC of 2.8-3.3 MPa I’Hz.
a substrate temperature of 800 °C. ) ) ) )
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